DOI QR코드

DOI QR Code

PARABOLIC QUATERNIONIC MONGE-AMPÈRE EQUATION ON COMPACT MANIFOLDS WITH A FLAT HYPERKÄHLER METRIC

  • Zhang, Jiaogen (School of Mathematical Sciences University of Science and Technology of China)
  • Received : 2020.11.14
  • Accepted : 2021.09.09
  • Published : 2022.01.01

Abstract

The quaternionic Calabi conjecture was introduced by Alesker-Verbitsky, analogous to the Kähler case which was raised by Calabi. On a compact connected hypercomplex manifold, when there exists a flat hyperKähler metric which is compatible with the underlying hypercomplex structure, we will consider the parabolic quaternionic Monge-Ampère equation. Our goal is to prove the long time existence and C convergence for normalized solutions as t → ∞. As a consequence, we show that the limit function is exactly the solution of quaternionic Monge-Ampère equation, this gives a parabolic proof for the quaternionic Calabi conjecture in this special setting.

Keywords

Acknowledgement

The author is very grateful to his thesis advisor Professor Xi Zhang for his constant support and countless advice. The author is also grateful to the anonymous referees and the editor for their careful reading and helpful suggestions which greatly improved the article. The authors are partially supported by NSF in China No. 11625106, 11801535 and 11721101. The research was partially supported by the project "Analysis and Geometry on Bundle" of Ministry of Science and Technology of the People's Republic of China, No. SQ2020YFA070080.

References

  1. S. Alesker, Solvability of the quaternionic Monge-Ampere equation on compact manifolds with a flat hyperKahler metric, Adv. Math. 241 (2013), 192-219. https://doi.org/10.1016/j.aim.2013.03.021
  2. S. Alesker and E. Shelukhin, On a uniform estimate for the quaternionic Calabi problem, Israel J. Math. 197 (2013), no. 1, 309-327. https://doi.org/10.1007/s11856-013-0003-1
  3. S. Alesker and E. Shelukhin, A uniform estimate for general quaternionic Calabi problem (with an appendix by Daniel Barlet), Adv. Math. 316 (2017), 1-52. https://doi.org/10.1016/j.aim.2017.05.023
  4. S. Alesker and M. Verbitsky, Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry, J. Geom. Anal. 16 (2006), no. 3, 375-399. https://doi.org/10.1007/BF02922058
  5. S. Alesker and M. Verbitsky, Quaternionic Monge-Ampere equation and Calabi problem for HKT-manifolds, Israel J. Math. 176 (2010), 109-138. https://doi.org/10.1007/s11856-010-0022-0
  6. L. Bedulli, G. Gentili, and L. Vezzoni, A parabolic approach to the Calabi-Yau problem in HKT geometry, arXiv:2105.04925.
  7. Z. B locki, The complex Monge-Ampere equation on compact Kahler manifolds, Course given at the Winter School in Complex Analysis, Toulouse, January 2005.
  8. S. Boucksom, P. Eyssidieux, and V. Guedj, Introduction, in An introduction to the Kahler-Ricci flow, 1-6, Lecture Notes in Math., 2086, Springer, Cham, 2013. https://doi.org/10.1007/978-3-319-00819-6_1
  9. C. P. Boyer, A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc. 102 (1988), no. 1, 157-164. https://doi.org/10.2307/2046051
  10. H. D. Cao, Deformation of Kahler metrics to Kahler-Einstein metrics on compact Kahler manifolds, Invent. Math. 81 (1985), no. 2, 359-372. https://doi.org/10.1007/BF01389058
  11. P. Cherrier, Equations de Monge-Ampere sur les varietes hermitiennes compactes, Bull. Sci. Math. (2) 111 (1987), no. 4, 343-385.
  12. J. Chu, The parabolic Monge-Ampere equation on compact almost Hermitian manifolds, J. Reine Angew. Math. 761 (2020), 1-24. https://doi.org/10.1515/crelle-2018-0019
  13. I. Gelfand, V. Retakh, and R. L. Wilson, Quaternionic quasideterminants and determinants, in Lie groups and symmetric spaces, 111-123, Amer. Math. Soc. Transl. Ser. 2, 210, Adv. Math. Sci., 54, Amer. Math. Soc., Providence, RI, 2003. https://doi.org/10.1090/trans2/210/08
  14. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
  15. M. Gill, Convergence of the parabolic complex Monge-Ampere equation on compact Hermitian manifolds, Comm. Anal. Geom. 19 (2011), no. 2, 277-303. https://doi.org/10.4310/CAG.2011.v19.n2.a2
  16. G. Grantcharov and Y. S. Poon, Geometry of hyper-Kahler connections with torsion, Comm. Math. Phys. 213 (2000), no. 1, 19-37. https://doi.org/10.1007/s002200000231
  17. B. Guan, S. Shi, and Z. Sui, On estimates for fully nonlinear parabolic equations on Riemannian manifolds, Anal. PDE 8 (2015), no. 5, 1145-1164. https://doi.org/10.2140/apde.2015.8.1145
  18. P. S. Howe and G. Papadopoulos, Twistor spaces for hyper-Kahler manifolds with torsion, Phys. Lett. B 379 (1996), no. 1-4, 80-86. https://doi.org/10.1016/0370-2693(96)00393-0
  19. B. Huisken, Parabolic Monge-Ampere equations on Riemannian manifolds, J. Funct. Anal. 147 (1997), no. 1, 140-163. https://doi.org/10.1006/jfan.1996.3062
  20. P. Li and S.-T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 156 (1986), no. 3-4, 153-201. https://doi.org/10.1007/BF02399203
  21. G. M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. https://doi.org/10.1142/3302
  22. A. J. Sommese, Quaternionic manifolds, Math. Ann. 212 (1974/75), 191-214. https://doi.org/10.1007/BF01357140
  23. M. Sroka, The C0 estimate for the quaternionic Calabi conjecture, Adv. Math. 370 (2020), 107237, 15 pp. https://doi.org/10.1016/j.aim.2020.107237
  24. W. Sun, Parabolic complex Monge-Ampere type equations on closed Hermitian manifolds, Calc. Var. Partial Differential Equations 54 (2015), no. 4, 3715-3733. https://doi.org/10.1007/s00526-015-0919-x
  25. W. Sun, On uniform estimate of complex elliptic equations on closed Hermitian manifolds, Commun. Pure Appl. Anal. 16 (2017), no. 5, 1553-1570. https://doi.org/10.3934/cpaa.2017074
  26. V. Tosatti, KAWA lecture notes on the Kahler-Ricci flow, Ann. Fac. Sci. Toulouse Math. (6) 27 (2018), no. 2, 285-376. https://doi.org/10.5802/afst.1571
  27. V. Tosatti and B. Weinkove, The complex Monge-Ampere equation on compact Hermitian manifolds, J. Amer. Math. Soc. 23 (2010), no. 4, 1187-1195. https://doi.org/10.1090/S0894-0347-2010-00673-X
  28. M. Verbitsky, HyperKahler manifolds with torsion, supersymmetry and Hodge theory, Asian J. Math. 6 (2002), no. 4, 679-712. https://doi.org/10.4310/AJM.2002.v6.n4.a5
  29. M. Verbitsky, Balanced HKT metrics and strong HKT metrics on hypercomplex manifolds, Math. Res. Lett. 16 (2009), no. 4, 735-752. https://doi.org/10.4310/MRL.2009.v16.n4.a14
  30. B. Weinkove, The Kahler-Ricci flow on compact Kahler manifolds, in Geometric analysis, 53-108, IAS/Park City Math. Ser., 22, Amer. Math. Soc., Providence, RI, 2016. https://doi.org/10.1090/pcms/022/03
  31. S. T. Yau, On the Ricci curvature of a compact Kahler manifold and the complex MongeAmpere equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411. https://doi.org/10.1002/cpa.3160310304
  32. D. Zhang, Hessian equations on closed Hermitian manifolds, Pacific J. Math. 291 (2017), no. 2, 485-510. https://doi.org/10.2140/pjm.2017.291.485