DOI QR코드

DOI QR Code

Magnetic field distribution in steel objects with different properties of hardened layer

  • Byzov, A.V. (Department of nondestructive testing, M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences) ;
  • Ksenofontov, D.G. (Department of nondestructive testing, M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences) ;
  • Kostin, V.N. (Department of nondestructive testing, M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences) ;
  • Vasilenko, O.N. (Department of nondestructive testing, M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences)
  • Received : 2021.07.23
  • Accepted : 2021.10.15
  • Published : 2022.01.25

Abstract

A simulation study of the distribution of magnetic flux induced by a U-shaped electromagnet into a two-layer massive object with variations in the depth and properties of the surface layer has been carried out. It has been established that the hardened surface layer "pushes" the magnetic flux into the bulk of the magnetized object and the magnetic flux penetration depth monotonically increases with increasing thickness of the hardened layer. A change in the thickness and magnetic properties of the surface layer leads to a redistribution of magnetic fluxes passing between the poles of the electromagnet along with the layer and the bulk of the steel object. In this case, the change in the layer thickness significantly affects the magnitude of the tangential component of the field on the surface of the object in the interpolar space, and the change in the properties of the layer affects the magnitude of the magnetic flux in the magnetic "transducer-object" circuit. This difference in magnetic parameters can be used for selective testing of the surface hardening quality. It has been shown that the hardened layer pushes the magnetic flux into the depth of the magnetized object. The nominal depth of penetration of the flow monotonically increases with an increase in the thickness of the hardened layer.

Keywords

Acknowledgement

The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (topic "Diagnostics", No. AAAA-A18-118020690196-3). D. Ksenofontov and A. Byzov are grateful to the M.N. Mikheev Institute of Metal Physics for support of their work on the state order of the Ministry of Education and Science of Russia on the topic "Diagnostics", which was carried out within the framework of the youth project of the IMP UB RAS No. 22-21/mol.

References

  1. Akhmedzhanov, R.A. (2004), Phizicheskie Osnovy Magnitnogo Nerazrushayushchego Kontrolya [Physical Fundamentals of Magnetic Non-destructive Testing], Omsk, Omsk State Trans. Univ., 69. (in Russian)
  2. Baev, A.R., Majorov, A.L. and Tishchenko, M.A. (2010), "Ultrasonic methods of analysis of the metal articles surface hardening", Litiyo i Metallurgiya [Found. Product. Metal.], 4, 267-271. (in Russian)
  3. Ba, Q., Song, R., Feng, Y. and Li, L. (2018), "Microstructural properties and hardening mechanism of explosion hardening of Mn13Cr2 steel surface", Adv. Mater. Process, 487-494. https://doi.org/10.1007/978-981-13-0107-0_47.
  4. Ba, Q., Song, R., Zhou, N., Pei, Z., Feng, Y. and Song, R. (2020), "Revealing working hardening behavior and substructure evolutions of ultrahigh strength and enhanced wear resistance Fe-25Mn-7Al-1C steel treated by explosion processing", J. Mater. Sci., 55, 1256-1268. https://doi.org/10.1007/s10853-019-04021-6.
  5. Baqeri, R., Honarvar, F. and Mehdizad, R. (2012), "Case depth profile measurement of hardened components using ultrasonic backscattering method", 18th World Conference on Nondestructive Testing, Durban, April.
  6. Bunshah, R.F. (2001), Handbook of Hard Coatings, Deposition Technologies, Properties and Applications, William Andrew Publishing, LLC, Norwich, New York, U.S.A.
  7. Ciuplys, V., Ciuplys, A., Vilys, J. and Kvedaras, V. (2010), "Increasing of carbon steel durability by surface hardening", Mater. Sci., 16(1), 24-28.
  8. Cuffe, J., Sun, H., Plotnikov, Y., Nath, S. and Sheila-Vadde, A. (2008), "Eddy current measurement of case hardened depth of steel components", 17th World Conference on Nondestructive Testing, Shanghai, October.
  9. Davis, J.R. (2002), Surface Hardening of Steels: Understanding the Basics, ASM International, Cleveland, Ohio, U.S.A.
  10. Dudkina, N.G. (2020), "A study of the surface layer of steel 45 subjected to electromechanical treatment with pulsed deformation", Metal Sci. Heat Treat., 62(3-4), 259-262. https://doi.org/10.1007/s11041-020-00545-w.
  11. Dykha, A., Makovkin, O. and Dykha, M. (2019), "Influence of discrete electromechanical hardening on the wear resistance of steels", Proceedings of the 2nd International Conference on Design, Simulation, Manufacturing: The Innovation Exchange DSMIE-2019, Lutsk, June.
  12. Fedorova, L.V., Fedorov, S.K., Serzhant, A.A., Golovin, V.V. and Systerov, S.V. (2017), "Electromechanical surface hardening of tubing steels", Metal Sci. Heat Treat., 59(3), 173-175. https://doi.org/10.1007/s11041-017-0123-z.
  13. Finite Element Method Magnetics (2021), https://www.femm.info/wiki/HomePage
  14. Gao, T., Jin, X., Qiao, J., Yang, H., Zhang, Y. and Wu, Y. (2021), "Successive strain hardening mechanisms induced by transformation induced plasticity in Fe60Mn20Co10Cr10 high entropy alloys", J. Appl. Phys. 129(175101), 1-10. https://doi.org/10.1063/5.0041352.
  15. Guo, D., Yu, D., Zhang, P., Duan, Y., Zhang, B., Zhong, Y. and Qiu, J. (2020), "Laminar plasma jet surface hardening of the U75V rail steel: Insight into the hardening mechanism and control scheme", Surf. Coat. Tech., 394(125857), 1-10. https://doi.org/10.1016/j.surfcoat.2020.125857.
  16. He, C., Yang, M., Liu, X., Wang, X. and Wu, B. (2017), "Characterisation of case depth in induction-hardened medium carbon steels based on magnetic minor hysteresis loop measurement technique", Philos. Mag., 97(31), 2829-2844. https://doi.org/10.1080/14786435.2017.1355116.
  17. Kahrobaee, S. and Karimi, E.Z. (2019), "Characterization of work-hardening in Hadfield steel using nondestructive eddy current method", Nondestruct. Test. Eval., 34(2), 178-192. https://doi.org/10.1080/10589759.2019.1581190.
  18. Kashefi, M. and Kahrobaee, S. (2013), "Dual-Frequency Approach to Assess Surface Hardened Layer Using NDE Technology", J. Mater. Eng. Perform., 22(4), 1108-1112. https://doi.org/10.1007/s11665-012-0369-y.
  19. Kostin, V.N., Vasilenko, O.N. and Byzov, A.V. (2018), "DIUS-1.15M mobile hardware-software structuroscopy system", Russ. J. Nondestruct., 54(9), 654-957. https://doi.org/10.1134/S1061830918090048
  20. Kushida, H., Maeda, Y., Kakimoto, H., Ishikawa, T. and Sugyo, S. (2014), "Surface defect generation behavior of wire rolling - analytical study of rolling conditions and experimental verification of surface-hardened layer", Tetsu-to-Hagane, 100(12), 103-109. https://doi.org/10.2355/tetsutohagane.100.1535.
  21. Liu, X., Zhang, R., Wu, B., Wang, X. and He, C. (2017), "Characterization and detection method for case depth evaluation based on magnetic hysteresis model of multi-layered structures", J. Mech. Eng., 53(20), 7-12. https://doi.org/10.3901/JME.2017.20.007.
  22. Lo, C.C.H., Kinser, E.R. and Jiles. D.C. (2006), "Magnetic non-destructive characterization of case depth in surface-hardened steel components", AIP Conference Proceedings, 820, 1253-1260. https://doi.org/10.1063/1.2184668.
  23. Murikov, S.A., Artem'ev, I.A., Murikov, E.S., Kudryashov, A.A., Urtsev, V.N., Nichipuruk, A.P. and Stashkov, A.N. (2011), "Roller diagnostics in hot-rolling mills on the basis of the coercive force", Steel Transl., 41(11), 954-957. https://doi.org/10.3103/S0967091211110167.
  24. Prisco, U. (2018), "Case microstructure in induction surface hardening of steels: an overview", Int. J. Adv. Manuf. Tech., 98, 2619-2637. https://doi.org/10.1007/s00170-018-2412-0.
  25. Rakhadilov, B.K., Buranich, V.V., Satbayeva, Z.A., Sagdoldina, Z.B., Kozhanova, R.S. and Pogrebnjak, A.D. (2020), "The cathodic electrolytic plasma hardening of the 20Cr2Ni4A chromium-nickel steel", J. Mater. Res. Tech., 9(4), 6969-6976. https://doi.org/10.1016/j.jmrt.2020.05.020.
  26. Sackmann, D., Heinzel, J. and Karpuschewski, B. (2020), "An approach for a reliable detection of grinding burn using the Barkhausen noise multi-parameter analysis", Procedia CIRP, 87, 415-419. https://doi.org/10.1016/j.procir.2020.02.076
  27. Salchak, Y.A., Sednev, D.A., Kroening, M. and Ardashkin, I.B. (2015), "Method of case hardening depth testing by using multifunctional ultrasonic testing instrument", IOP Conf. Series: Mater. Sci. Eng., 81 (012080), 1-8. https://doi.org/10.1088/1757-899X/81/1/012080.
  28. Wagha, S.V., Bhattb, D.V., Menghanic, J.V. and Bhavikattid, S.S. (2020), "Effects of laser hardening process parameters on hardness depth of Ck45 steel using Taguchi's optimization technique", IOP Conf. Series: Mater. Sci. Eng., 810(012027), 1-9. https://doi.org/10.1088/1757-899X/810/1/012027.
  29. Shcherbinin, V.E. and Gorkunov, E.S. (1996), Magnitnye Metody Structurnogo Analiza I Nerazrushayushchego Kontrolya (Magnetic methods of structure analysis and nondestructive testing), Ekaterinburg, UrB RAS, 266. (in Russian)
  30. Stepanova, T.Y. (2009), Tekhnologii Poverkhnostnogo Uprochneniya Detaley Mashin (Technologies of Surface Hardening of Machine Elements), Ivanovo, Ivanovskii Gos. Chem.-Tech. Univ., 64. (in Russian)
  31. Sugimoto K., Hojo T. and Mizuno Y. (2018), "Surface-hardened Layer Properties of Newly Developed Case Hardening Steel", ISIJ Int., 58(4), 727-733. https://doi.org/10.2355/isijinternational.ISIJINT-2017-460.
  32. Sugimoto, K., Hojo, T. and Mizuno, Y. (2018), "Effects of vacuum-carburizing conditions on surfacehardened layer properties of transformation-induced plasticity-aided martensitic steel", Metals, 7(301), 1-11. https://doi.org/10.3390/met7080301.
  33. Sun, P., Li, S., Yu, G., He, X., Zheng, C. and Ning, W. (2014), "Laser surface hardening of 42CrMo cast steel for obtaining a wide and uniform hardened layer by shaped beams", Int. J. Adv. Manuf. Tech., 70, 787-796. https://doi.org/10.1007/s00170-013-5292-3.
  34. Sundqvist, J., Manninen, T., Heikkinen, H.P., Anttila, S. and Kaplan, A.F.H. (2018), "Laser surface hardening of 11% Cr ferritic stainless steel and its sensitization behaviour", Surf. Coat. Tech., 344, 673-679. https://doi.org/10.1016/j.surfcoat.2018.04.002.
  35. Tewary, N.K., Syed, B., Ghosh, S.K., Kundu, S., Shariff, S.M. and Padmanabham, G. (2014), "Laser surface hardening of 11% Cr ferritic stainless steel and its sensitisation behaviour", Mater. Sci. Eng. A, 606, 58-67. http://dx.doi.org/10.1016/j.msea.2014.03.083.
  36. Tressia, G., Pereira, J.I., Penagos, J.J., Bortoleto, E., Sinatora, A. (2021), "Effect of in-service work hardening on the sliding wear resistance of a heavy haul rail in the gauge corner", Wear., 482- 483(203979), 1-13. https://doi.org/10.1016/j.wear.2021.203979.
  37. Tumanski, S. (2011), Handbook of Magnetic Measurements, Warsaw University of Technology. Taylor & Francis Group, LLC.
  38. Xiang, Y., Yu, D., Cao, X., Liu, Y. and Yao, J. (2017), "Effects of thermal plasma surface hardening on wear and damage properties of rail steel", Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 232(7), 787-796. https://doi.org/10.1177%2F1350650117729073. https://doi.org/10.1177%2F1350650117729073
  39. Zhang, F.C., Lv, B., Wang, T.S., Zheng, C.L., Zhang, M., Luo, H.H., Liu, H. and Xu, A.Y. (2010), "Explosion hardening of Hadfield steel crossing", Mater. Sci. Tech., 26(2), 223-229. https://doi.org/10.1179/174328408X363263.