Acknowledgement
This work was supported by the National Science Foundation of China (Grant Nos. 51978424), Science and technology development plan project of Shaanxi Construction Department (Grant No. 2018-K05).
References
- Applied Technology Council (ATC), (1991), Seismic Vulnerability and Impacts of Disruption of Lifelines in the Coterminous United States, ATC-25.
- Arabzadeh, H. and Galal, K. (2017), "Seismic collapse risk assessment and FRP retrofitting of RC coupled C-shaped core walls using the FEMA P695 methodology", J. Struct. Eng., 143(9), 04017096. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001820.
- Balasubramanian, S.R., Balaji, R.K., Meher, P.A., Rupen, G. and Anoop, M.B. (2014), "A methodology for development of seismic fragility curves for URBM buildings", Earthq. Struct., 6(6), 611-625. http://dx.doi.org/10.12989/eas.2014.6.6.611.
- Bakun, W.H., Aagaard, B., Dost, B., Ellsworth, W.L., Hardebeck, J.L., Harris, R.A., Ji, C., Johnston, M.J.S., Langbein, J., Lienkaemper, J.J., Michael, A.J., Murray, J.R., Nadeau, R.M., Reasenberg, P.A., Reichle, M.S., Roeloffs, E.A., Shakal, A., Simpson, R.W. and Waldhauser, F. (2005), "Implications for prediction and hazard assessment from the 2004 Parkfield earthquake", Nature, 437(7061), 969-974. https://doi.org/10.1038/nature04067.
- Barbat, A.H., Pujades, L.G. and Lantada, N. (2008), "Seismic damage evaluation in urban areas using the capacity spectrum method: application to Barcelona", Soil Dyn. Earthq. Eng., 28(10-11), 851-865. https://doi.org/10.1016/j.soildyn.2007.10.006.
- Benedetti, D., Benzoni, G. and Parisi, M.A. (1988), "Seismic vulnerability and risk evaluation for old urban nuclei", Earthq. Eng. Struct. Dyn., 16(2), 183-201. https://doi.org/10.1002/eqe.4290160203.
- Benemaran, R.S. and Esmaeili-Falak, M. (2020), "Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO", Comput. Concrete, 26(4), 309-316. http://dx.doi.org/10.12989/cac.2020.26.4.309.
- Caputo, A.C. (2016), "A model for probabilistic seismic risk assessment of process plants", Pressure Vessels and Piping Conference, 50466, V008T08A025, Am. Soc. Mech. Eng. https://doi.org/10.1115/PVP2016-63280.
- Castillo, A., Lopez-Almansa, F. and Pujades, L.G. (2011), "Seismic risk analysis of urban non-engineered buildings: application to an informal settlement in Merida, Venezuela", Nat. hazards, 59(2), 891-916. https://doi.org/10.1007/s11069-011-9805-9.
- Cavaleri, L., Di Trapani, F. and Ferrotto, M.F. (2017), "A new hybrid procedure for the definition of seismic vulnerability in Mediterranean cross-border urban areas", Nat. Hazards, 86(2), 517-541. https://doi.org/10.1007/s11069-016-2646-9.
- Celik, O.C. and Ellingwood, B.R. (2009), "Seismic risk assessment of gravity load designed reinforced concrete frames subjected to Mid-America ground motions", J. Struct. Eng., 135(4), 414-424. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(414).
- Darzi, A., Zolfaghari, M.R., Cauzzi, C. and Fah, D. (2019), "An empirical ground-motion model for horizontal PGV, PGA, and 5% damped elastic response spectra (0.01-10 s) in Iran", B. Seismol. Soc. Am., 109(3), 1041-1057. https://doi.org/10.1785/0120180196.
- Esmaeili-Falak, M. (2017). "Effect of system's geometry on the stability of frozen wall in excavation of saturated granular soils", Doctoral dissertation, University of Tabriz.
- Esmaeili, F.M., and Hooshang K., (2018), The Effect of Traffic Load Excavation Supported by Artificial Ground Freezing: A Case Study of Tabriz Subway, 35-49. http://www.bese.ir/article_240349.html.
- Esmaeili-Falak, M., Sarkhani Benemaran, R. and Seifi, R. (2020a), "Improvement of the mechanical and durability parameters of construction concrete of the Qotursuyi Spa", Concrete Res., 13(2), 81-90. https://doi.org/10.22124/JCR.2020.14518.1395.
- Faghihmaleki, H., Nejati, F., Mirzagoltabar-Roshan, A. and Batebi-Motlagh, Y. (2017), "An evaluation of multi-hazard risk subjected to blast and earthquake loads in RC moment frame with shear wall", J. Eng. Sci. Technol., 12(3), 636-647.
- FEMA, N. (1999), "Earthquake loss estimation methodologyHAZUS 99", Federal Emergency Management Agency and National Institute of Buildings Sciences, Washington DC, U.S.A.
- Ferreira, T.M., Maio, R. and Vicente, R. (2017), "Seismic vulnerability assessment of the old city centre of Horta, Azores: calibration and application of a seismic vulnerability index method", B. Earthq. Eng., 15(7), 2879-2899. https://doi.org/10.1007/s10518-016-0071-9.
- Galanis, P., Sycheva, A., Mimra, W. and Stojadinovic, B. (2018), "A framework to evaluate the benefit of seismic upgrading", Earthq. Spectra, 34(2), 527-548. https://doi.org/10.1193/120316EQS221M.
- Ghobarah, A., Abou-Elfath, H. and Biddah, A. (1999), "Response-based damage assessment of structures", Earthq. Eng. Struct. Dyn., 28(1), 79-104. https://doi.org/10.1002/(SICI)10969845(199901)28:1<79::AIDEQE805>3.0.CO;2-J.
- Giordano, N., De Luca, F. and Sextos, A. (2020), "Analytical fragility curves for masonry school building portfolios in Nepal", B. Earthq. Eng., 19(2), 1121-1150. https://doi.org/10.1007/s10518-020-00989-8.
- Guneyisi, E.M. and Altay, G. (2008), "Seismic fragility assessment of effectiveness of viscous dampers in R/C buildings under scenario earthquakes", Struct. Saf., 30(5), 461-480. https://doi.org/10.1016/j.strusafe.2007.06.001.
- Huang, Y., Hu, H. and Xiong, M. (2019), "Performance-based seismic fragility analysis of retaining walls based on the probability density evolution method", Struct. Infrastruct. Eng., 15(1), 103-112. https://doi.org/10.1080/15732479.2018.1520906.
- Jahangiri, V. and Shakib, H. (2018), "Seismic risk assessment of buried steel gas pipelines under seismic wave propagation based on fragility analysis", B. Earthq. Eng., 16(3), 1571-1605. https://doi.org/10.1007/s10518-017-0260-1.
- Kappos, A.J., Panagopoulos, G. and Penelis, G.G. (2008), "Development of a seismic damage and loss scenario for contemporary and historical buildings in Thessaloniki, Greece", Soil Dyn. Earthq. Eng., 28(10-11), 836-850. https://doi.org/10.1016/j.soildyn.2007.10.017.
- Kehila, F., Remki, M., Kibboua, A. and Bechtoula, H. (2020), "Developing seismic fragility curves for existing reinforced concrete structures in Algeria", Proc. Inst. Civil Eng. Struct. Build., 1-16. https://doi.org/10.1680/jstbu.19.00142.
- Lantada, N., Irizarry, J., Barbat, A.H., Goula, X., Roca, A., Susagna, T. and Pujades, L.G. (2010), "Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method", B. Earthq. Eng., 8(2), 201-229. https://doi.org/10.1007/s10518-009-9148-z.
- Marano, G.C., Greco, R. and Morrone, E. (2011), "Analytical evaluation of essential facilities fragility curves by using a stochastic approach", Eng. Struct., 33(1), 191-201. https://doi.org/10.1016/j.engstruct.2010.10.005.
- Masi, A., Digrisolo, A. and Manfredi, V. (2015), "Fragility curves of gravity-load designed RC buildings with regularity in plan", Earthq. Struct., 9(1), 1-27. http://dx.doi.org/10.12989/eas.2015.9.1.001.
- Milutinovic, Z.V. and Trendafiloski, G.S. (2003), "Risk-UE an advanced approach to earthquake risk scenarios with applications to different european towns", Contract: EVK4-CT-2000-00014, WP4: Vulnerability of Current Buildings, 1-111.
- Mojiri, S., El-Dakhakhni, W.W. and Tait, M.J. (2015), "Seismic fragility evaluation of lightly reinforced concrete-block shear walls for probabilistic risk assessment", J. Struct. Eng., 141(4), 04014116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001055.
- Mouroux, P. and Le Brun, B. (2006), "Presentation of RISK-UE project", B. Earthq. Eng., 4(4), 323-339. https://doi.org/10.1007/s10518-006-9020-3.
- Surana, M. (2020), "Seismic fragility curves using pulse-like and spectrally equivalent ground-motion records", Earthq. Struct., 19(2), 79-90. http://dx.doi.org/10.12989/eas.2020.19.2.079.
- Padgett, J.E. (2007), "Seismic vulnerability assessment of retrofitted bridges using probabilistic methods", Doctoral dissertation, Georgia Institute of Technology. http://hdl.handle.net/1853/14469.
- Pan, Y., Agrawal, A.K., Ghosn, M. and Alampalli, S. (2010), "Seismic fragility of multi-span simply supported steel highway bridges in New York State. II: Fragility analysis, fragility curves, and fragility surfaces", J. Bridge Eng., 15(5), 462-472. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000055.
- Puteri, D.M., Affandi, A.K., Sailah, S., Hudayat, N. and Zawawi, M.K. (2019), "Analysis of peak ground acceleration (PGA) using the probabilistic seismic hazard analysis (PSHA) method for Bengkulu earthquake of 1900-2017 period", J. Physics Conference Series, 1282(1), 012054. https://doi.org/10.1088/1742-6596/1282/1/012054.
- Rossetto, T., Ioannou, I., Grant, D.N. and Maqsood, T. (2014), "Guidelines for the empirical vulnerability assessment".
- Sarkhani Benemaran, R., Esmaeili-Falak, M. and Katebi, H. (2020), "Physical and numerical modelling of pile-stabilised saturated layered slopes", Proc. Inst. Civil Eng. Geotech. Eng., 1-16. https://doi.org/10.1680/jgeen.20.00152.
- Singh, S.K., Perez-Campos, X., Ordaz, M., Iglesias, A. and Kostoglodov, V. (2020), "Scaling of peak ground displacement with seismic moment above the Mexican subduction thrust", Seismol. Res. Lett., 91(2A), 956-966. https://doi.org/10.1785/0220190155.
- Vacareanu, R., Lungu, D., Arion, C. and Aldea, A. (2004), "WP7-seismic risk scenarios handbook. RISK-UE", An advanced approach to earthquake risk scenarios with applications to different European towns, Contract: EVK4-CT-2000-00014.
- Wang, Z., Zentner, I. and Zio, E. (2018), "A Bayesian framework for estimating fragility curves based on seismic damage data and numerical simulations by adaptive neural networks", Nucl. Eng. Des., 338, 232-246. https://doi.org/10.1016/j.nucengdes.2018.08.016.