DOI QR코드

DOI QR Code

Kidney protective potential of lactoferrin: pharmacological insights and therapeutic advances

  • Received : 2021.10.28
  • Accepted : 2021.11.30
  • Published : 2022.01.01

Abstract

Kidney disease is becoming a global public health issue. Acute kidney injury (AKI) and chronic kidney disease (CKD) have serious adverse health outcomes. However, there is no effective therapy to treat these diseases. Lactoferrin (LF), a multi-functional glycoprotein, is protective against various pathophysiological conditions in various disease models. LF shows protective effects against AKI and CKD. LF reduces markers related to inflammation, oxidative stress, apoptosis, and kidney fibrosis, and induces autophagy and mitochondrial biogenesis in the kidney. Although there are no clinical trials of LF to treat kidney disease, several clinical trials and studies on LF-based drug development are ongoing. In this review, we discussed the possible kidney protective mechanisms of LF, as well as the pharmacological and therapeutic advances. The evidence suggests that LF may become a potent pharmacological agent to treat kidney diseases.

Keywords

Acknowledgement

The authors acknowledge MD. Hasanur Rahman for his support in Fig. 1.

References

  1. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80:1258-1270. https://doi.org/10.1038/ki.2011.368
  2. Bikbov B, Perico N, Remuzzi G. Disparities in chronic kidney disease prevalence among males and females in 195 countries: analysis of the global burden of disease 2016 study. Nephron. 2018;139:313-318. https://doi.org/10.1159/000489897
  3. Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS, Hobbs FD. Global prevalence of chronic kidney disease- a systematic review and meta-analysis. PLoS One. 2016;11:e0158765. https://doi.org/10.1371/journal.pone.0158765
  4. Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol Dial Transplant. 2019;34:1803-1805. https://doi.org/10.1093/ndt/gfz174
  5. Kimura T, Isaka Y, Yoshimori T. Autophagy and kidney inflammation. Autophagy. 2017;13:997-1003. https://doi.org/10.1080/15548627.2017.1309485
  6. Meijer E, Boertien WE, Nauta FL, Bakker SJ, van Oeveren W, Rook M, van der Jagt EJ, van Goor H, Peters DJ, Navis G, de Jong PE, Gansevoort RT. Association of urinary biomarkers with disease severity in patients with autosomal dominant polycystic kidney disease: a cross-sectional analysis. Am J Kidney Dis. 2010;56:883-895. https://doi.org/10.1053/j.ajkd.2010.06.023
  7. Schrier R, McFann K, Johnson A, Chapman A, Edelstein C, Brosnahan G, Ecder T, Tison L. Cardiac and renal effects of standard versus rigorous blood pressure control in autosomal-dominant polycystic kidney disease: results of a seven-year prospective randomized study. J Am Soc Nephrol. 2002;13:1733-1739. https://doi.org/10.1097/01.ASN.0000018407.60002.B9
  8. van Dijk MA, Breuning MH, Duiser R, van Es LA, Westendorp RG. No effect of enalapril on progression in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2003;18:2314-2320. https://doi.org/10.1093/ndt/gfg417
  9. Guo C, Xue H, Guo T, Zhang W, Xuan WQ, Ren YT, Wang D, Chen YH, Meng YH, Gao HL, Zhao P. Recombinant human lactoferrin attenuates the progression of hepatosteatosis and hepatocellular death by regulating iron and lipid homeostasis in ob/ob mice. Food Funct. 2020;11:7183-7196. https://doi.org/10.1039/D0FO00910E
  10. Actor JK, Hwang SA, Kruzel ML. Lactoferrin as a natural immune modulator. Curr Pharm Des. 2009;15:1956-1973. https://doi.org/10.2174/138161209788453202
  11. Hegazy R, Salama A, Mansour D, Hassan A. Renoprotective effect of lactoferrin against chromium-induced acute kidney injury in rats: involvement of IL-18 and IGF-1 inhibition. PLoS One. 2016;11:e0151486. https://doi.org/10.1371/journal.pone.0151486
  12. Belizi S, Nazarova IA, Klimova IA, Prokof'ev VN, Pushkina NV. Antioxidant properties of lactoferrin from human milk. Bull Exp Biol Med . 1999;127:471-473. https://doi.org/10.1007/BF02434942
  13. Sinopoli A, Isonne C, Santoro MM, Baccolini V. The effects of orally administered lactoferrin in the prevention and management of viral infections: a systematic review. Rev Med Virol. 2021. doi: 10.1002/rmv.2261. [Epub ahead of print]
  14. Fernandes KE, Carter DA. The antifungal activity of lactoferrin and its derived peptides: mechanisms of action and synergy with drugs against fungal pathogens. Front Microbiol. 2017;8:2. https://doi.org/10.3389/fmicb.2017.00002
  15. Jenssen H, Hancock RE. Antimicrobial properties of lactoferrin. Biochimie. 2009;91:19-29. https://doi.org/10.1016/j.biochi.2008.05.015
  16. Shi P, Liu M, Fan F, Chen H, Yu C, Lu W, Du M. Identification and mechanism of peptides with activity promoting osteoblast proliferation from bovine lactoferrin. Food Biosci. 2018;22:19-25. https://doi.org/10.1016/j.fbio.2017.12.011
  17. Qari SH, Attia K. Gene expression of renal lactoferrin and glycemic homeostasis in diabetic rats with reference to the protective role of exogenous bovine lactoferrin. J Basic Appl Zool . 2020;81:12. https://doi.org/10.1186/s41936-020-00152-4
  18. Hao L, Shan Q, Wei J, Ma F, Sun P. Lactoferrin: major physiological functions and applications. Curr Protein Pept Sci. 2019;20:139-144. https://doi.org/10.2174/1389203719666180514150921
  19. Yen CC, Chang WH, Tung MC, Chen HL, Liu HC, Liao CH, Lan YW, Chong KY, Yang SH, Chen CM. Lactoferrin protects hyperoxia-induced lung and kidney systemic inflammation in an in vivo imaging model of NF-κB/luciferase transgenic mice. Mol Imaging Biol. 2020;22:526-538. https://doi.org/10.1007/s11307-019-01390-x
  20. Iigo M, Alexander DB, Xu J, Futakuchi M, Suzui M, Kozu T, Akasu T, Saito D, Kakizoe T, Yamauchi K, Abe F, Takase M, Sekine K, Tsuda H. Inhibition of intestinal polyp growth by oral ingestion of bovine lactoferrin and immune cells in the large intestine. Biometals. 2014;27:1017-1029. https://doi.org/10.1007/s10534-014-9747-2
  21. Chen HL, Yen CC, Wang SM, Tsai TC, Lai ZL, Sun JY, Lin W, Hsu WH, Chen CM. Aerosolized bovine lactoferrin reduces lung injury and fibrosis in mice exposed to hyperoxia. Biometals. 2014;27:1057-1068. https://doi.org/10.1007/s10534-014-9750-7
  22. Ahmed KA, Saikat ASM, Moni A, Kakon SAM, Islam MR, Uddin MJ. Lactoferrin: potential functions, pharmacological insights, and therapeutic promises. J Adv Biotechnol Exp Ther. 2021;4:223-237. https://doi.org/10.5455/jabet.2021.d123
  23. Hsu YH, Chiu IJ, Lin YF, Chen YJ, Lee YH, Chiu HW. Lactoferrin contributes a renoprotective effect in acute kidney injury and early renal fibrosis. Pharmaceutics. 2020;12:434. https://doi.org/10.3390/pharmaceutics12050434
  24. Sorensen M, Sorensen SPL. Comptes Rendus des travaux du Laboratoire Carlsberg. The Proteins in whey. Copenhague: Hagerup in Komm.; 1939. p.3-9.
  25. Karav S, German JB, Rouquie C, Le Parc A, Barile D. Studying lactoferrin N-glycosylation. Int J Mol Sci. 2017;18:870. https://doi.org/10.3390/ijms18040870
  26. Adlerova L, Bartoskova A, Faldyna M. Lactoferrin: a review. Vet Med . 2008;53:457-468. https://doi.org/10.17221/1978-vetmed
  27. Furmanski P, Li ZP, Fortuna MB, Swamy CV, Das MR. Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. J Exp Med. 1989;170:415-429. https://doi.org/10.1084/jem.170.2.415
  28. Jiang R, Lopez V, Kelleher SL, Lonnerdal B. Apo- and holo-lactoferrin are both internalized by lactoferrin receptor via clathrinmediated endocytosis but differentially affect ERK-signaling and cell proliferation in Caco-2 cells. J Cell Physiol. 2011;226:3022-3031. https://doi.org/10.1002/jcp.22650
  29. Suzuki YA, Lopez V, Lonnerdal B. Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci. 2005;62:2560-2575. https://doi.org/10.1007/s00018-005-5371-1
  30. Takayama Y, Aoki R, Uchida R, Tajima A, Aoki-Yoshida A. Role of CXC chemokine receptor type 4 as a lactoferrin receptor. Biochem Cell Biol. 2017;95:57-63. https://doi.org/10.1139/bcb-2016-0039
  31. Gao CH, Dong HL, Tai L, Gao XM. Lactoferrin-containing immunocomplexes drive the conversion of human macrophages from M2- into M1-like phenotype. Front Immunol. 2018;9:37. https://doi.org/10.3389/fimmu.2018.00037
  32. Shin K, Wakabayashi H, Yamauchi K, Yaeshima T, Iwatsuki K. Recombinant human intelectin binds bovine lactoferrin and its peptides. Biol Pharm Bull. 2008;31:1605-1608. https://doi.org/10.1248/bpb.31.1605
  33. Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaissa M, Spik G, Cecchelli R, Pierce A. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem. 1999;274:7011-7017. https://doi.org/10.1074/jbc.274.11.7011
  34. Rawat P, Kumar S, Sheokand N, Raje CI, Raje M. The multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a novel macrophage lactoferrin receptor. Biochem Cell Biol. 2012;90:329-338. https://doi.org/10.1139/o11-058
  35. Milewska A, Zarebski M, Nowak P, Stozek K, Potempa J, Pyrc K. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J Virol. 2014;88:13221-13230. https://doi.org/10.1128/JVI.02078-14
  36. Lang J, Yang N, Deng J, Liu K, Yang P, Zhang G, Jiang C. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One. 2011;6:e23710. https://doi.org/10.1371/journal.pone.0023710
  37. Kanwar JR, Mahidhara G, Roy K, Sasidharan S, Krishnakumar S, Prasad N, Sehgal R, Kanwar RK. Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. Nanomedicine (Lond). 2015;10:35-55. https://doi.org/10.2217/nnm.14.132
  38. Gupta I, Sehgal R, Kanwar RK, Punj V, Kanwar JR. Nanocapsules loaded with iron-saturated bovine lactoferrin have antimicrobial therapeutic potential and maintain calcium, zinc and iron metabolism. Nanomedicine (Lond). 2015;10:1289-1314. https://doi.org/10.2217/nnm.14.209
  39. Meng Q, Wang A, Hua H, Jiang Y, Wang Y, Mu H, Wu Z, Sun K. Intranasal delivery of Huperzine A to the brain using lactoferrinconjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer's disease. Int J Nanomedicine. 2018;13:705-718. https://doi.org/10.2147/IJN.S151474
  40. Akiyama Y, Oshima K, Kuhara T, Shin K, Abe F, Iwatsuki K, Nadano D, Matsuda T. A lactoferrin-receptor, intelectin 1, affects uptake, sub-cellular localization and release of immunochemically detectable lactoferrin by intestinal epithelial Caco-2 cells. J Biochem. 2013;154:437-448. https://doi.org/10.1093/jb/mvt073
  41. Kanwar JR, Kamalapuram SK, Krishnakumar S, Kanwar RK. Multimodal iron oxide (Fe3O4)-saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER(-)/PR(-)/HER2(-)). Nanomedicine (Lond). 2016;11:249-268. https://doi.org/10.2217/nnm.15.199
  42. Ando K, Hasegawa K, Shindo K, Furusawa T, Fujino T, Kikugawa K, Nakano H, Takeuchi O, Akira S, Akiyama T, Gohda J, Inoue J, Hayakawa M. Human lactoferrin activates NF-kappaB through the Toll-like receptor 4 pathway while it interferes with the lipopolysaccharide- stimulated TLR4 signaling. FEBS J. 2010;277:2051-2066. https://doi.org/10.1111/j.1742-4658.2010.07620.x
  43. Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394:1949-1964. https://doi.org/10.1016/s0140-6736(19)32563-2
  44. Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012;2:1303-1353. https://doi.org/10.1002/cphy.c110041
  45. Kimoto Y, Nishinohara M, Sugiyama A, Haruna A, Takeuchi T. Protective effect of lactoferrin on cisplatin-induced nephrotoxicity in rats. J Vet Med Sci. 2013;75:159-164. https://doi.org/10.1292/jvms.12-0154
  46. Okazaki Y, Kono I, Kuriki T, Funahashi S, Fushimi S, Iqbal M, Okada S, Toyokuni S. Bovine lactoferrin ameliorates ferric nitrilotriacetate- induced renal oxidative damage in rats. J Clin Biochem Nutr. 2012;51:84-90. https://doi.org/10.3164/jcbn.11-100
  47. Arab HH, Salama SA, Maghrabi IA. Camel milk ameliorates 5-fluorouracil- induced renal injury in rats: targeting MAPKs, NF-κB and PI3K/Akt/eNOS pathways. Cell Physiol Biochem. 2018;46:1628-1642. https://doi.org/10.1159/000489210
  48. Li D, Hu Z, He Q, Guo Y, Chong Y, Xu J, Qin L. Lactoferrin alleviates acute alcoholic liver injury by improving redox-stress response capacity in female C57BL/6J mice. J Agric Food Chem. 2021;69:14856-14867. https://doi.org/10.1021/acs.jafc.1c06813
  49. Ammendolia MG, Marchetti M, Superti F. Bovine lactoferrin prevents the entry and intercellular spread of herpes simplex virus type 1 in Green Monkey Kidney cells. Antiviral Res. 2007;76:252-262. https://doi.org/10.1016/j.antiviral.2007.07.005
  50. Ibuki M, Shoda C, Miwa Y, Ishida A, Tsubota K, Kurihara T. Lactoferrin has a therapeutic effect via HIF inhibition in a murine model of choroidal neovascularization. Front Pharmacol. 2020;11:174. https://doi.org/10.3389/fphar.2020.00174
  51. Shimmura S, Shimoyama M, Hojo M, Urayama K, Tsubota K. Reoxygenation injury in a cultured corneal epithelial cell line protected by the uptake of lactoferrin. Invest Ophthalmol Vis Sci. 1998;39:1346-1351.
  52. van de Looij Y, Ginet V, Chatagner A, Toulotte A, Somm E, Huppi PS, Sizonenko SV. Lactoferrin during lactation protects the immature hypoxic-ischemic rat brain. Ann Clin Transl Neurol. 2014;1:955-967. https://doi.org/10.1002/acn3.138
  53. Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012;379:165-180. https://doi.org/10.1016/S0140-6736(11)60178-5
  54. Singh A, Zapata RC, Pezeshki A, Knight CG, Tuor UI, Chelikani PK. Whey protein and its components lactalbumin and lactoferrin affect energy balance and protect against stroke onset and renal damage in salt-loaded, high-fat fed male spontaneously hypertensive stroke-prone rats. J Nutr. 2020;150:763-774. https://doi.org/10.1093/jn/nxz312
  55. Saito H. Toxico-pharmacological perspective of the Nrf2-Keap1 defense system against oxidative stress in kidney diseases. Biochem Pharmacol. 2013;85:865-872. https://doi.org/10.1016/j.bcp.2013.01.006
  56. Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 2011;25:287-299. https://doi.org/10.1016/j.bpobgyn.2010.10.016
  57. Betteridge DJ. What is oxidative stress? Metabolism. 2000;49(2 Suppl 1):3-8. https://doi.org/10.1016/s0026-0495(00)80077-3
  58. Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35(Pt 5):1147-1150. https://doi.org/10.1042/BST0351147
  59. Sies H. What is oxidative stress? In: Keaney JF, editor. Oxidative stress and vascular disease. Boston: Springer; 2000. p.1-8.
  60. Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006;8:1865-1879. https://doi.org/10.1089/ars.2006.8.1865
  61. Ozbek E. Induction of oxidative stress in kidney. Int J Nephrol. 2012;2012:465897. https://doi.org/10.1155/2012/465897
  62. Rojas-Rivera J, Ortiz A, Egido J. Antioxidants in kidney diseases: the impact of bardoxolone methyl. Int J Nephrol. 2012;2012:321714. https://doi.org/10.1155/2012/321714
  63. Finaud J, Lac G, Filaire E. Oxidative stress: relationship with exercise and training. Sports Med. 2006;36:327-358. https://doi.org/10.2165/00007256-200636040-00004
  64. Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension. 2003;42:1075-1081. https://doi.org/10.1161/01.hyp.0000100443.09293.4f
  65. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86:494-501. https://doi.org/10.1161/01.RES.86.5.494
  66. Kwon G, Uddin MJ, Lee G, Jiang S, Cho A, Lee JH, Lee SR, Bae YS, Moon SH, Lee SJ, Cha DR, Ha H. A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis. Oncotarget. 2017;8:74217-74232. https://doi.org/10.18632/oncotarget.18540
  67. Sureshbabu A, Ryter SW, Choi ME. Oxidative stress and autophagy: crucial modulators of kidney injury. Redox Biol. 2015;4:208-214. https://doi.org/10.1016/j.redox.2015.01.001
  68. Uddin MJ, Kim EH, Hannan MA, Ha H. Pharmacotherapy against oxidative stress in chronic kidney disease: promising small molecule natural products targeting Nrf2-HO-1 signaling. Antioxidants (Basel). 2021;10:258. https://doi.org/10.3390/antiox10020258
  69. Modaresi A, Nafar M, Sahraei Z. Oxidative stress in chronic kidney disease. Iran J Kidney Dis. 2015;9:165-179.
  70. Kruzel ML, Zimecki M, Actor JK. Lactoferrin in a context of inflammation-induced pathology. Front Immunol. 2017;8:1438. https://doi.org/10.3389/fimmu.2017.01438
  71. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428-435. https://doi.org/10.1038/nature07201
  72. Nathan C. Points of control in inflammation. Nature. 2002;420:846-852. https://doi.org/10.1038/nature01320
  73. Majno G, Joris I. Cells, tissues, and disease: principles of general pathology. New York: Oxford University Press; 2004.
  74. Fan J, Xie K, Wang L, Zheng N, Yu X. Roles of inflammasomes in inflammatory kidney diseases. Mediators Inflamm. 2019;2019:2923072.
  75. Ernandez T, Mayadas TN. Immunoregulatory role of TNFalpha in inflammatory kidney diseases. Kidney Int. 2009;76:262-276. https://doi.org/10.1038/ki.2009.142
  76. Panzer U, Steinmetz OM, Turner JE, Meyer-Schwesinger C, von Ruffer C, Meyer TN, Zahner G, Gomez-Guerrero C, Schmid RM, Helmchen U, Moeckel GW, Wolf G, Stahl RA, Thaiss F. Resolution of renal inflammation: a new role for NF-kappaB1 (p50) in inflammatory kidney diseases. Am J Physiol Renal Physiol. 2009;297:F429-F439. https://doi.org/10.1152/ajprenal.90435.2008
  77. Serhan CN. The resolution of inflammation: the devil in the flask and in the details. FASEB J. 2011;25:1441-1448. https://doi.org/10.1096/fj.11-0502ufm
  78. Drago-Serrano ME, Campos-Rodriguez R, Carrero JC, de la Garza M. Lactoferrin: balancing ups and downs of inflammation due to microbial infections. Int J Mol Sci. 2017;18:501. https://doi.org/10.3390/ijms18030501
  79. Abrink M, Larsson E, Gobl A, Hellman L. Expression of lactoferrin in the kidney: implications for innate immunity and iron metabolism. Kidney Int. 2000;57:2004-2010. https://doi.org/10.1046/j.1523-1755.2000.00050.x
  80. Garcia-Montoya IA, Cendon TS, Arevalo-Gallegos S, Rascon-Cruz Q. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta. 2012;1820:226-236. https://doi.org/10.1016/j.bbagen.2011.06.018
  81. Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;80:309-326. https://doi.org/10.1146/annurev-physiol-022516-034227
  82. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006;69:213-217. https://doi.org/10.1038/sj.ki.5000054
  83. Jeong BY, Uddin MJ, Park JH, Lee JH, Lee HB, Miyata T, Ha H. Novel plasminogen activator inhibitor-1 inhibitors prevent diabetic kidney injury in a mouse model. PLoS One. 2016;11:e0157012. https://doi.org/10.1371/journal.pone.0157012
  84. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7:684-696. https://doi.org/10.1038/nrneph.2011.149
  85. Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol . 2002;283:F861-F875. https://doi.org/10.1152/ajprenal.00362.2001
  86. Efstratiadis G, Divani M, Katsioulis E, Vergoulas G. Renal fibrosis. Hippokratia. 2009;13:224-229.
  87. Wick G, Grundtman C, Mayerl C, Wimpissinger TF, Feichtinger J, Zelger B, Sgonc R, Wolfram D. The immunology of fibrosis. Annu Rev Immunol. 2013;31:107-135. https://doi.org/10.1146/annurev-immunol-032712-095937
  88. Meng XM, Nikolic-Paterson DJ, Lan HY. Inflammatory processes in renal fibrosis. Nat Rev Nephrol. 2014;10:493-503. https://doi.org/10.1038/nrneph.2014.114
  89. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861-2873. https://doi.org/10.1101/gad.1599207
  90. Kelekar A. Autophagy. Ann N Y Acad Sci. 2005;1066:259-71. https://doi.org/10.1196/annals.1363.015
  91. Marino G, Madeo F, Kroemer G. Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol. 2011;23:198-206. https://doi.org/10.1016/j.ceb.2010.10.001
  92. Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 2012;9:20. https://doi.org/10.1186/1743-8977-9-20
  93. White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 2009;15:5308-5316. https://doi.org/10.1158/1078-0432.ccr-07-5023
  94. Brest P, Corcelle EA, Cesaro A, Chargui A, Belaid A, Klionsky DJ, Vouret-Craviari V, Hebuterne X, Hofman P, Mograbi B. Autophagy and Crohn's disease: at the crossroads of infection, inflammation, immunity, and cancer. Curr Mol Med. 2010;10:486-502. https://doi.org/10.2174/156652410791608252
  95. Pan T, Kondo S, Le W, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain. 2008;131(Pt 8):1969-1978. https://doi.org/10.1093/brain/awm318
  96. Kruzel ML, Actor JK, Radak Z, Bacsi A, Saavedra-Molina A, Boldogh I. Lactoferrin decreases LPS-induced mitochondrial dysfunction in cultured cells and in animal endotoxemia model. Innate Immun. 2010;16:67-79. https://doi.org/10.1177/1753425909105317
  97. Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, Rakugi H, Isaka Y. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol. 2011;22:902-913. https://doi.org/10.1681/ASN.2010070705
  98. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73:994-1007. https://doi.org/10.1038/sj.ki.5002786
  99. Ding Y, Choi ME. Autophagy in diabetic nephropathy. J Endocrinol. 2015;224:R15-R30. https://doi.org/10.1530/JOE-14-0437
  100. Lin TA, Wu VC, Wang CY. Autophagy in chronic kidney diseases. Cells. 2019;8:61. https://doi.org/10.3390/cells8010061
  101. Sohn M, Kim K, Uddin MJ, Lee G, Hwang I, Kang H, Kim H, Lee JH, Ha H. Delayed treatment with fenofibrate protects against highfat diet-induced kidney injury in mice: the possible role of AMPK autophagy. Am J Physiol Renal Physiol. 2017;312:F323-F334. https://doi.org/10.1152/ajprenal.00596.2015
  102. Ichimiya T, Yamakawa T, Hirano T, Yokoyama Y, Hayashi Y, Hirayama D, Wagatsuma K, Itoi T, Nakase H. Autophagy and autophagy- related diseases: a review. Int J Mol Sci. 2020;21:8974. https://doi.org/10.3390/ijms21238974
  103. Aizawa S, Hoki M, Yamamuro Y. Lactoferrin promotes autophagy via AMP-activated protein kinase activation through low-density lipoprotein receptor-related protein 1. Biochem Biophys Res Commun. 2017;493:509-513. https://doi.org/10.1016/j.bbrc.2017.08.160
  104. Zhang Y, Zhang ZN, Li N, Zhao LJ, Xue Y, Wu HJ, Hou JM. Nbr1- regulated autophagy in Lactoferrin-induced osteoblastic differentiation. Biosci Biotechnol Biochem. 2020;84:1191-1200. https://doi.org/10.1080/09168451.2020.1737505
  105. Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007;83:84-92. https://doi.org/10.1016/j.yexmp.2006.09.008
  106. Nicolson GL. Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Integr Med (Encinitas). 2014;13:35-43.
  107. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384-387. https://doi.org/10.1126/science.1104343
  108. Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102:401-414. https://doi.org/10.1161/CIRCRESAHA.107.165472
  109. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100:460-473. https://doi.org/10.1161/01.RES.0000258450.44413.96
  110. Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta. 1998;1366:211-223. https://doi.org/10.1016/S0005-2728(98)00114-5
  111. Ballinger SW. Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med. 2005;38:1278-1295. https://doi.org/10.1016/j.freeradbiomed.2005.02.014
  112. Modica-Napolitano JS, Singh KK. Mitochondrial dysfunction in cancer. Mitochondrion. 2004;4:755-762. https://doi.org/10.1016/j.mito.2004.07.027
  113. Joe Y, Zheng M, Kim HJ, Uddin MJ, Kim SK, Chen Y, Park J, Cho GJ, Ryter SW, Chung HT. Cilostazol attenuates murine hepatic ischemia and reperfusion injury via heme oxygenase-dependent activation of mitochondrial biogenesis. Am J Physiol Gastrointest Liver Physiol. 2015;309:G21-G29. https://doi.org/10.1152/ajpgi.00307.2014
  114. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016;25:119-146. https://doi.org/10.1089/ars.2016.6665
  115. Maekawa H, Inoue T, Ouchi H, Jao TM, Inoue R, Nishi H, Fujii R, Ishidate F, Tanaka T, Tanaka Y, Hirokawa N, Nangaku M, Inagi R. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 2019;29:1261-1273.e6. https://doi.org/10.1016/j.celrep.2019.09.050
  116. Duann P, Lin PH. Mitochondria damage and kidney disease. Adv Exp Med Biol. 2017;982:529-551. https://doi.org/10.1007/978-3-319-55330-6_27
  117. Jiang M, Bai M, Lei J, Xie Y, Xu S, Jia Z, Zhang A. Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol. 2020;319:F1105-F1116. https://doi.org/10.1152/ajprenal.00285.2020
  118. Wei PZ, Szeto CC. Mitochondrial dysfunction in diabetic kidney disease. Clin Chim Acta. 2019;496:108-116. https://doi.org/10.1016/j.cca.2019.07.005
  119. Gucer S, Talim B, Asan E, Korkusuz P, Ozen S, Unal S, Kalkanoglu SH, Kale G, Caglar M. Focal segmental glomerulosclerosis associated with mitochondrial cytopathy: report of two cases with special emphasis on podocytes. Pediatr Dev Pathol. 2005;8:710-717. https://doi.org/10.1007/s10024-005-0058-z
  120. Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol. 2016;12:267-280. https://doi.org/10.1038/nrneph.2015.214
  121. Park YG, Jeong JK, Lee JH, Lee YJ, Seol JW, Kim SJ, Hur TY, Jung YH, Kang SJ, Park SY. Lactoferrin protects against prion proteininduced cell death in neuronal cells by preventing mitochondrial dysfunction. Int J Mol Med. 2013;31:325-330. https://doi.org/10.3892/ijmm.2012.1198
  122. Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399-425. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151434
  123. Agostinis P. Endoplasmic reticulum stress. In: Schwab M, editor. Encyclopedia of cancer. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p.1240-1244.
  124. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140:900-917. https://doi.org/10.1016/j.cell.2010.02.034
  125. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115:2656-2664. https://doi.org/10.1172/JCI26373
  126. Zheng M, Zhang Q, Joe Y, Kim SK, Uddin MJ, Rhew H, Kim T, Ryter SW, Chung HT. Carbon monoxide-releasing molecules reverse leptin resistance induced by endoplasmic reticulum stress. Am J Physiol Endocrinol Metab. 2013;304:E780-E788. https://doi.org/10.1152/ajpendo.00466.2012
  127. Uddin MJ, Pak ES, Ha H. Carbon monoxide releasing molecule-2 protects mice against acute kidney injury through inhibition of ER stress. Korean J Physiol Pharmacol. 2018;22:567-575. https://doi.org/10.4196/kjpp.2018.22.5.567
  128. Gallazzini M, Pallet N. Endoplasmic reticulum stress and kidney dysfunction. Biol Cell. 2018;110:205-216. https://doi.org/10.1111/boc.201800019
  129. Inagi R. Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury. Nephron Exp Nephrol. 2009;112:e1-e9. https://doi.org/10.1159/000210573
  130. Raghavan S, Malayaperumal S, Mohan V, Balasubramanyam M. A comparative study on the cellular stressors in mesenchymal stem cells (MSCs) and pancreatic β-cells under hyperglycemic milieu. Mol Cell Biochem. 2021;476:457-469. https://doi.org/10.1007/s11010-020-03922-4
  131. Jonasch E, Stadler WM, Bukowski RM, Hayes TG, Varadhachary A, Malik R, Figlin RA, Srinivas S. Phase 2 trial of talactoferrin in previously treated patients with metastatic renal cell carcinoma. Cancer. 2008;113:72-77. https://doi.org/10.1002/cncr.23519
  132. Elzoghby AO, Abdelmoneem MA, Hassanin IA, Abd Elwakil MM, Elnaggar MA, Mokhtar S, Fang JY, Elkhodairy KA. Lactoferrin, a multi-functional glycoprotein: active therapeutic, drug nanocarrier & targeting ligand. Biomaterials. 2020;263:120355 https://doi.org/10.1016/j.biomaterials.2020.120355
  133. Ishikado A, Imanaka H, Takeuchi T, Harada E, Makino T. Liposomalization of lactoferrin enhanced it's anti-inflammatory effects via oral administration. Biol Pharm Bull. 2005;28:1717-1721. https://doi.org/10.1248/bpb.28.1717
  134. Yao X, Bunt C, Cornish J, Quek SY, Wen J. Oral delivery of lactoferrin: a review. Int J Pept Res Ther. 2013;19:125-134. https://doi.org/10.1007/s10989-012-9326-8
  135. Knudsen KB, Northeved H, Kumar PE, Permin A, Gjetting T, Andresen TL, Larsen S, Wegener KM, Lykkesfeldt J, Jantzen K, Loft S, Moller P, Roursgaard M. In vivo toxicity of cationic micelles and liposomes. Nanomedicine. 2015;11:467-477. https://doi.org/10.1016/j.nano.2014.08.004
  136. Wei X, Shao B, He Z, Ye T, Luo M, Sang Y, Liang X, Wang W, Luo S, Yang S, Zhang S, Gong C, Gou M, Deng H, Zhao Y, Yang H, Deng S, Zhao C, Yang L, Qian Z, et al. Cationic nanocarriers induce cell necrosis through impairment of Na(+)/K(+)-ATPase and cause subsequent inflammatory response. Cell Res. 2015;25:237-253. https://doi.org/10.1038/cr.2015.9
  137. Kato K, Tamaki N, Saito Y, Fujimoto T, Sato A. Amino group PEGylation of bovine lactoferrin by linear polyethylene glycol-pnitrophenyl active esters. Biol Pharm Bull. 2010;33:1253-1255. https://doi.org/10.1248/bpb.33.1253
  138. Nojima Y, Suzuki Y, Yoshida K, Abe F, Shiga T, Takeuchi T, Sugiyama A, Shimizu H, Sato A. Lactoferrin conjugated with 40-kDa branched poly(ethylene glycol) has an improved circulating halflife. Pharm Res. 2009;26:2125-2132. https://doi.org/10.1007/s11095-009-9925-z
  139. Nojima Y, Suzuki Y, Iguchi K, Shiga T, Iwata A, Fujimoto T, Yoshida K, Shimizu H, Takeuchi T, Sato A. Development of poly(ethylene glycol) conjugated lactoferrin for oral administration. Bioconjug Chem. 2008;19:2253-2259. https://doi.org/10.1021/bc800258v
  140. Trif M, Guillen C, Vaughan DM, Telfer JM, Brewer JM, Roseanu A, Brock JH. Liposomes as possible carriers for lactoferrin in the local treatment of inflammatory diseases. Exp Biol Med (Maywood). 2001;226:559-564. https://doi.org/10.1177/153537020122600608
  141. Roseanu A, Florian PE, Moisei M, Sima LE, Evans RW, Trif M. Liposomalization of lactoferrin enhanced its anti-tumoral effects on melanoma cells. Biometals. 2010;23:485-492. https://doi.org/10.1007/s10534-010-9312-6
  142. Onishi H, Machida Y, Koyama K. Preparation and in vitro characteristics of lactoferrin-loaded chitosan microparticles. Drug Dev Ind Pharm. 2007;33:641-647. https://doi.org/10.1080/03639040601085334
  143. Onishi H, Koyama K, Sakata O, Machida Y. Preparation of chitosan/ alginate/calcium complex microparticles loaded with lactoferrin and their efficacy on carrageenan-induced edema in rats. Drug Dev Ind Pharm. 2010;36:879-884. https://doi.org/10.3109/03639040903567109
  144. Koyama K, Onishi H, Sakata O, Machida Y. Preparation and in vitro evaluation of chitosan-coated alginate/calcium complex microparticles loaded with fluorescein-labeled lactoferrin. Yakugaku Zasshi. 2009;129:1507-1514. https://doi.org/10.1248/yakushi.129.1507
  145. Raei M, Rajabzadeh G, Zibaei S, Jafari SM, Sani AM. Nano-encapsulation of isolated lactoferrin from camel milk by calcium alginate and evaluation of its release. Int J Biol Macromol. 2015;79:669-673. https://doi.org/10.1016/j.ijbiomac.2015.05.048
  146. Balcao VM, Costa CI, Matos CM, Moutinho CG, Amorim M, Pintado ME, Gomes AP, Vila MM, Teixeira JA. Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll . 2013;32:425-431. https://doi.org/10.1016/j.foodhyd.2013.02.004
  147. Conesa C, Calvo M, Sanchez L. Recombinant human lactoferrin: a valuable protein for pharmaceutical products and functional foods. Biotechnol Adv. 2010;28:831-838. https://doi.org/10.1016/j.biotechadv.2010.07.002