DOI QR코드

DOI QR Code

Effects of pH and Chloride Concentration on Corrosion Behavior of Duplex Stainless Steel and Titanium Alloys Ti 6Al 2Nb 1Ta 1Mo at Elevated Temperature for Pump Impeller Applications

  • Received : 2022.06.24
  • Accepted : 2022.09.07
  • Published : 2022.12.30

Abstract

The objective of this study was to determine effects of temperatures and pH of sodium chloride solution with MgCl2 ions on corrosion resistance of duplex stainless-steel X2CrNiMoN22-5-3 (DSS) and Ti 6Al 2Nb1Ta1Mo (Ti). Effects of sodium chloride concentration on corrosion resistance were also studied. Corrosion behavior and pitting morphology of duplex stainless steel (DSS) and Ti alloys were evaluated through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). It was found that a decrease in pH significantly reduced the corrosion resistance of both alloys. Changes in chloride concentration and temperature had more substantial impact on corrosion behavior of DSS than on Ti alloys. Pitting corrosion was formed on DSS samples under all conditions, whereas crevice corrosion was developed on Ti samples with the presence of magnesium chloride at 90 ℃. In conclusion, magnesium chloride ions in an exceedingly strong acidity solution appear to interact with re-passivation process at the surface of these alloys and influence the resulting surface topography.

Keywords

Acknowledgement

I would like to express my special thanks of gratitude to the Technical University of Clausthal gave me the golden opportunity to do this wonderful project as well as the University of Mosul for funding me during the research project.

References

  1. Stephen J. Morrow, Materials Selection For Seawater Pumps, Turbomachinery Laboratory, Texas A&M University (2010). Doi: https://doi.org/10.21423/R10G9H 
  2. Pharic Smith, Thomas Kraenzler, Maximizing Pump Efficiency through Reduced Corrosion and Erosion, Empowering Pumps and Equipment, January 16 (2017). https://empoweringpumps.com/sulzer-maximizing-pump-efficiency-through-reduced-corrosion-erosion/ 
  3. F. Gall, Proc. Pumps and Compressors Conf., Session 9, pp. 1 - 29, Perth, Australia (2013). https://www.idconline.com/conferences/1306FrankPaper.pdf 
  4. R.W. Shutz, D.E. Thomas, ASM Metals Handbook, Corrosion, vol. 13, ninth ed., p. 669, ASM International, Metals Park, OH (1987). 
  5. T. Ohtsuka, M. Masuda, and N. Sato, Ellipsometric Study of Anodic Oxide Films on Titanium in Hydrochloric Acid, Sulfuric Acid, and Phosphate Solution, Journal of The Electrochemical Society, 132, 787 (1985). Doi: https://doi.org/10.1149/1.2113958 
  6. T. M. Yue, J. K. Yu, Z. Mei, H. C. Man, Excimer laser surface treatment of Ti-6Al-4V alloy for corrosion resistance enhancement, Materials Letters, 52, 206 (2002). Doi: https://doi.org/10.1016/S0167-577X(01)00395-0 
  7. C. Blanco-Pinzon, Z. Liu, K. Voisey, F. A. Bonilla, P. Skeldon, G. E. Thompson, J. Piekoszewski, A. G. Chmielewski, Excimer laser surface alloying of titanium with nickel and palladium for increased corrosion resistance, Corrosion Science, 47, 1251 (2005). Doi: https://doi.org/10.1016/j.corsci.2004.06.030 
  8. Z. B. Wang, H. X. Hu, Y. G. Zheng, W. Ke, Y. X. Qiao, Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid, Corrosion Science, 103, 50 (2016). Doi: https://doi.org/10.1016/j.corsci.2015.11.003 
  9. R. C. Newman, The dissolution and passivation kinetics of stainless alloys containing molybdenum- I. Coulometric studies of Fe-Cr and Fe-Cr-Mo alloys, Corrosion Science, 25, 331 (1985). Doi: https://doi.org/10.1016/0010-938X(85)90111-8 
  10. P. Marcus, On some fundamental factors in the effect of alloying elements on passivation of alloys, Corrosion Science, 36, 2155 (1994). Doi: https://doi.org/10.1016/0010-938X(94)90013-2 
  11. C. Ouchi, H. Fukai, K. Hasegawa, Microstructural characteristics and unique properties obtained by solution treating or aging in β-rich α+β titanium alloy, Materials Science and Engineering A, 263, 132 (1999). Doi: https://doi.org/10.1016/S0921-5093(98)01171-X 
  12. Erween Abd Rahim, S. Safian, Investigation on tool life and surface integrity when drilling Ti- 6Al-4V and Ti-5Al-4V-Mo/Fe, JSME International Journal Series C, 49, 340 (2006). Doi: https://doi.org/10.1299/jsmec.49.340 
  13. J. Charles, Super Duplex Stainless Steels: Structure and Properties, Proc. Duplex Stainless Steels '91 Conf., pp. 151 - 168, Les Editions de Physique, Vol. 1, Les Ulis Cedex, France (1991). 
  14. D. S. Bergstrom, J. J. Dunn, J. F. Grubb, and W. A. Pratt, US20036551420B1 (2003). 
  15. B. Wei, J.C. Tokash, F. Zhang, Y. Kim, B.E. Logan, Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells, Electrochimica Acta,, 89, 45 (2013). Doi: https://doi.org/10.1016/j.electacta.2012.11.004 
  16. X. G. Han, F. Zhu, X. P. Zhu, M. K. Lei, J. J. Xu, Electrochemical corrosion behavior of modified MAO film on magnesium alloy AZ31 irradiated by high intensity pulsed ion beam, Surface and Coatings Technology, 228, S164 (2013). Doi: https://doi.org/10.1016/j.surfcoat.2012.06.053 
  17. Yunan Prawoto, Khaled M. Ibrahim, wan sani wan nik, Effect of ph and chloride concentration on the corrosion of duplex stainless steel, Arabian Journal for Science and Engineering, 34, 2 (2009). 
  18. B. J. Wang, D. K. Xu, S. D. Wang, E. H. Han, Fatigue crack initiation of Magnesium alloys under elastic stress amplitudes: A review, Frontiers of Mechanical Engineering,, 14, 113 (2019). Doi: https://doi.org/10.1007/s11465-018-0482-1 
  19. J. W. Lu, Y. Q. Zhao, H. Z. Niu, Y. S. Zhang, Y. Z. Du, W. Zhang, W. T. Huo, Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications, Materials Science and Engineering C, 62, 36 (2016). Doi: https://doi.org/10.1016/j.msec.2016.01.019 
  20. Xi Yunping, Xie Zhaohui, Corrosion Effects of Magnesium Chloride and Sodium Chloride on Automobile Components, Report No. CDOT-DTD-R-2002-4. https://www.codot.gov/programs/research/pdfs/2002/magautocor.pdf 
  21. In Hyoung Rhee, Hyunjun Jung, Daechul Cho, Evaluation of pH control agents influencing on corrosion of carbon steel in secondary water chemistry condition of pressurized water reactor, Nuclear Engineering and Technology, 46, 431, (2014). Doi: https://doi.org/10.5516/NET.09.2013.076 
  22. E. Symniotis, Galvanic effects on the active dissolution of duplex stainless steels, Corrosion, 46, 2 (1990). Doi: https://doi.org/10.5006/1.3585062 
  23. Y.-H. Yau, M. A. Streicher, Galvanic corrosion of duplex FeCr-10% Ni alloys in reducing acids, Corrosion, 43, 366 (1987). Doi: https://doi.org/10.5006/1.3583872 
  24. Michael O. Bodunrin, Lesley H. Chown, Josias W. van der Merwe, Kenneth K. Alaneme, Christian Oganbule, Desmond E.P. Klenam und Nthape P. Mphasha, Corrosion behavior of titanium alloys in acidic and saline media: role of alloy design, passivation integrity, and electrolyte modification, Corrosion Reviews, 38, 25 (2020). Doi: https://doi.org/10.1515/corrrev-2019-0029 
  25. Oluwatoyin Adenike Olaseinde, Comparative Study of the Effect of Temperature on the Corrosion Behaviour of 2205 Duplex Stainless Steel and 316 Stainless Steel in Acidic Chloride Environment, Advances in Materials Physics and Chemistry, 5,185 (2015). Doi: https://doi.org/10.4236/ampc.2015.55019 
  26. Jing Liu, Akram Alfantazi, Edouard Asselin, Effects of Temperature and Sulfate on the Pitting Corrosion of Titanium in High-Temperature Chloride Solutions, Journal of The Electrochemical Society, 162, C189 (2015). Doi: https://doi.org/10.1149/2.0541504jes 
  27. Jianjun Pang, Daniel J Blackwood, Corrosion of Titanium Alloys in High Temperature Seawater, Corrosion Science and Technology, 14, 195 (2015). Doi: https://doi.org/10.14773/cst.2015.14.4.195