DOI QR코드

DOI QR Code

Effects of Heat Treatment on Surface Properties of Aluminum 6061 Alloy After Anodization

알루미늄 6061 합금 양극산화 후 열처리에 따른 표면 특성 관찰

  • Seungmin, Lee (Department of Advanced Materials Engineering, Dong-eui University) ;
  • Chanyoung, Jeong (Department of Advanced Materials Engineering, Dong-eui University)
  • 이승민 (동의대학교 금속소재공학과) ;
  • 정찬영 (동의대학교 금속소재공학과)
  • Received : 2022.11.03
  • Accepted : 2022.11.19
  • Published : 2022.12.30

Abstract

Anodization is a representative electrochemical surface treatment method that can improve both heat resistance and corrosion resistance by forming an anodization film on the surface of the aluminum. However, these properties can be changed after an additional heat treatment process. In this study, Al 6061 was subjected to an anodization process at 60 V for 1 hour, 5 hours, or 9 hours. An additional heat treatment process was performed at 500 ℃ for 30 minutes. Field emission scanning electron microscopy (FE-SEM) analysis revealed that the thickness of the anodized film was increased in proportion to the anodization time. Both pore size and pore diameter of the anodized film was also increased after anodization. After an additional heat treatment process, there were no significant changes in the thickness, pore size, or pore diameter of the anodized film. Heat resistance was confirmed through thermal analysis and chemical resistance was evaluated with a potentiodynamic polarization test.

Keywords

Acknowledgement

이 논문은 2022년도 밀양시와 한국재료연구원의 지원 받아 연구되었음(PICO240).

References

  1. Y. J. Lee, S. C. Lee, A Study on Electric Vehicle Composite Material Frame Battery Case Using Collision Analysis, Journal of the Korean Society of Manufacturing Process Engineers, 21, 15 (2022). Doi: https://doi.org/10.14775/ksmpe.2022.21.01.015 
  2. C. Park, S. Moon, I. Cheong, D. Yun, Effect of AC Current Density on the PEO Film Formation of Al6061 Alloy, Journal of the Korean institute of surface engineering, 52, 138 (2019). Doi: https://doi.org/10.5695/JKISE.2019.52.3.138 
  3. C. Blawert, W. Dietzel, E. Ghali, G. Song, Anodizing Treatments for Magnesium Alloys and Their Effect on Corrosion Resistance in Various Environments, Advanced Engineering Materials, 8, 511 (2006). Doi: https://doi.org/10.1002/adem.200500257
  4. Y. Madhavi, N. Narasaiah, A. Jyothirmayi, Influence of surface-roughness on the corrosion-fatigue behavior of MAO coated 6061-T6 Al alloy assessed in NaCl medium, Surface and Coatings Technology, 14, 127102 (2021). Doi: https://doi.org/10.1016/j.surfcoat.2021.127102 
  5. L. Telmenbayar, A.G. Ramu, D. Yang, M. Song, O. Erdenebat, D. Choi, Corrosion resistance of the anodization/glycidoxypropyltrimethoxysilane composite coating on 6061 aluminum alloy, Surface and Coatings Technology, 403, 126433 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2020.126433 
  6. R. Krishna, Y. Madhavi, T. Sahithi, N. P. Wasekar, N. M. Chavan, D. S. Rao, Influence of prior shot peening variables on the fatigue life of micro arc oxidation coated 6061-T6 Al alloy, International Journal of Fatigue, 106, 165 (2018). Doi: https://doi.org/10.1016/j.ijfatigue.2017.09.020 
  7. J. Zang, S. Yu, G. Zhu, X. Zhou, Fabrication of superhydrophobic surface on aluminum alloy 6061 by a facile and effective anodic oxidation method, Surface and Coatings Technology, 380, 125078 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2019.125078 
  8. E. Song, Y. T. Kim, J. Choi, Effects of Na3PO4 Concentration on the Porosity of Plasma Electrolytic Oxidation Coatings Surface on the 6061 Al Alloy and Subsequent-NaAlO2 Sealing, Journal of the Korean institute of surface engineering, 52, 117 (2019). Doi: https://doi.org/10.5695/JKISE.2019.52.3.117 
  9. C. Jeong and C. H. Choi, Single-Step Direct Fabrication of Pillar-on-pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency, ACS Applied Materials and Interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n 
  10. T. C. Cheng and C. C. Chou, The Electrical and Mechanical Properties of Porous Anodic 6061-T6 Aluminum Alloy Oxide Film, Journal of Nanomaterials, 2015, 141 (2015). Doi: https://doi.org/10.1155/2015/371405 
  11. A. Rath, P. Theato, Advanced AAO Templating of Nanostructured Stimuli-Responsive Polymers: Hype or Hope?, Advanced Functional Materials, 30, 1902959 (2020). Doi: https://doi.org/10.1002/adfm.201902959 
  12. C. Jeong, J. Lee, K. Sheppard, CH Choi, Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392 
  13. W. Lee, S. J. Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures, Chemical Reviews, 114, 7487 (2014). Doi: https://doi.org/10.1021/cr500002z 
  14. R. Imai, M. Tanaka, H. Hashimoto, H. Asoh, Facile synthesis of size- and shape-controlled freestanding Au nanohole arrays by sputter deposition using anodic porous alumina templates, Nanotechnology, 31, 415303 (2020). Doi: https://doi.org/10.1088/1361-6528/ab9f76 
  15. C. K. Chung, T. Y. Liu, W. T. Chang, Effect of oxalic acid concentration on the formation of anodic aluminum oxide using pulse anodization at room temperature, Microsystem Technologies, 16, 1451 (2010). Doi: https://doi.org/10.1007/s00542-009-0944-9 
  16. M. Franco, S. Anoop, R. Uma Rani, A. K. Sharma, Porous layer characterization of anodized and black-anodized aluminium by electrochemical studies, International Scholarly Research Notices Corrosion, 2012, 1 (2012). Doi: https://doi.org/10.5402/2012/323676 
  17. S. Kim, C. Jeong, Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes, Materials, 14, 1089 (2021). Doi: https://doi.org/10.3390/ma14051089 
  18. C. Jeong, Ph.D. Thesis, pp.2-5, Stevens Institute of Technology, New Jersey (2013). 
  19. M. Ardelean, S. Lascau, E. Ardelean, A. Josan, Surface treatments for aluminium alloys, IOP Conference Series: Materials Science and Engineering, 294, 012042 (2018). Doi: https://doi.org/10.1088/1757-899X/294/1/012042 
  20. C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395 
  21. M. Sanghyuck, M. Sungmo, L. Sugun, Formation Characteristics of Hard Anodizing Films on 6xxx Aluminum Alloys, Journal of the Korean institute of surface engineering, 52, 203 (2019). Doi: https://doi.org/10.5695/JKISE.2019.52.4.203 
  22. Z. B. Xie, S. Adams, D. J. Blackwood, J. Wang, The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells, Nanotechnology, 19, 405701 (2008). Doi: https://doi.org/10.1088/0957-4484/19/40/405701 
  23. G. D. Sulka, Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing, Nanostructured Materials in Electrochemistry, 1, 1 (2008). Doi: https://doi.org/10.1002/9783527621507.ch1 
  24. Y. Goueffon, L. Arurault, C. Mabru, C. Tonon, P. Guigue, Black anodic coatings for space applications: study of the process parameters characteristics and mechanical properties, Journal of Materials Processing Technology, 209, 5145 (2009). Doi: https://doi.org/10.1016/j.jmatprotec.2009.02.013 
  25. I. Levin, D. Brandon, Metastable alumina polymorphs: crystal structures and transition sequences, Journal of the American Ceramic Society, 81, 1995 (1998). Doi: https://doi.org/10.1111/j.1151-2916.1998.tb02581.x 
  26. S. Kang, Convergent Study of Aluminum Anodizing Method on the Thermal Fatigue, Journal of the korea Convergence Society, 7, 169 (2016). Doi: https://doi.org/10.15207/JKCS.2016.7.5.169 
  27. J. Lee, Y. Kim, H. Jang, U. Jung, W. Chung, Cr2O3 Sealing of Anodized Aluminum Alloy by Heat Treatment, Surface and Coatings Technology, 243, 34 (2014). Doi: https://doi.org/10.1016/j.surfcoat.2012.05.071 
  28. S. Y. Kang, D. W. Lee, Study on Improvement of Mechanical Properties after Heat Treatment of Hard Chromium Electrodeposits with Additives, Journal of the Korean institute of surface engineering, 47, 116 (2014). Doi: https://doi.org/10.5695/JKISE.2014.47.3.116 
  29. Y. Park, C. Jeong, The Formation of Anodic Oxide Film by Anodizing Voltage and Time of 6061 Aluminum Alloy, Journal of the Korean Institute of Electrical and Electronic Material Engineers, 34, 68 (2021). Doi: https://doi.org/10.4313/JKEM.2021.34.1.68 
  30. H. Ji, C. Jeong, Study on Corrosion and Oxide Growth Behavior of Anodized Aluminum 5052 Alloy, Journal of the Korean institute of surface engineering, 51, 372 (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.6.372 
  31. J. Kim, C. Jeong, A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method, Corrosion Science and Technology, 21, 290 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.290 
  32. Y. Jeon, S. Kim, J. Park, N. Jeong, Enhanced Properties of Aluminum Oxide Layers with Post Heat Treatment, Journal of the Korean institute of surface engineering, 52, 275 (2019). Doi: https://doi.org/10.5695/JKISE.2019.52.5.275 
  33. M. Sungmo, Anodic oxidation treatment methods of metals, Journal of the Korean institute of surface engineering, 51, 1 (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.1.1 
  34. J. Chang, C. Lin, C. Liao, C. Chen, W. Tsai, Effect of Heat-Treatment on Characteristics of Anodized Aluminum Oxide Formed in Ammonium Adipate Solution, Journal of the Electrochemical Society, 151, B188 (2004). Doi: https://doi.org/10.1149/1.1646140