DOI QR코드

DOI QR Code

Experimental studies of impact pressure on a vertical cylinder subjected to depth induced wave breaking

  • Received : 2022.07.14
  • Accepted : 2022.12.05
  • Published : 2022.12.25

Abstract

This paper describes experimental studies of impact pressure generated by breaking regular waves in shallow water on a vertical cylinder. Experimental work was carried out in a shallow water flume using a 1:30 - scale model of a vertical rigid circular hollow cylinder with a diameter 0.2 m. This represents a monopile for shallow water offshore wind turbines, subjected to depth induced breaking regular waves of frequencies of 0.8 Hz. The experimental setup included a 1 in 10 sloping bed followed by horizontal bed with a constant 0.8 m water depth. To determine the breaking characteristics, plunging breaking waves were generated. Free surface elevations were recorded at different locations between the wave paddle to the cylinder. Wave impact pressures on the cylinder at a number of elevations along its height were measured under breaking regular waves. The depth-induced wave breaking characteristics, impact pressures, and wave run-up during impact for various cylinder locations are presented and discussed.

Keywords

Acknowledgement

The authors appreciate the wave flume and experimental facilities provided by the Department of Ocean Engineering. The first author wishes to express his gratitude to the instrumentation team for their assistance during the trials.

References

  1. Arntsen, O.A., Ros Collados, X. and Torum, A. (2013), "Impact forces on a vertical pile from plunging breaking waves", Proceedings of the Coastal Structures 2011.
  2. Buchmann, B., Skourup, J. and Cheung, KF. (1998), "Run-up on a structure due to second- order waves and a current in a numerical wave tank", Appl. Ocean Res., 20(5), 297-308. https://doi.org/10.1016/S0141-1187(98)00022-4.
  3. Chan, E.S. and Melville, W.K. (1989), "Plunging wave forces on surface-piercing structures", J. Offshore Mech. Arct. Eng., 111(2), 92-100. https://doi.org/10.1115/1.3257093.
  4. Chella, M.A., Bihs, H. and Myrhaug, D. (2019), "Wave impact pressure and kinematics due to breaking wave impingement on a monopole", J. Fluid. Struct., 86, 94-123. https://doi.org/10.1016/j.jfluidstructs.2019.01.016.
  5. Chellaa, M.A., Colladosc, X.R., Bihs, H., Myrhaugb, D. and Asgeir, O. (2016), "Numerical and experimental investigation of breaking wave", Proceedings of the 13th Deep Sea Offshore Wind R&D Conference, EERA DeepWind.
  6. Esandi, J.M., Buldakov, E., Simons, R. and Stagonas, D. (2020), "An experimental study on wave forces on a vertical cylinder due to spilling breaking and near-breaking wavegroups", Coast. Eng., 162, 103778. https://doi.org/10.1016/j.coastaleng.2020.103778.
  7. Grue, J. and Osyka, B. (2021), "Runup on a vertical column in strong water wave events", Coast. Eng., 163, 103775. https://doi.org/10.1016/j.coastaleng.2020.103775.
  8. Ha, Y.J., Kim, K.H., Nam, B.W. and Hong, S.Y. (2020), "Experimental investigation for characteristics of wave impact loads on a vertical cylinder in breaking waves", Ocean Eng., 209, 107470. https://doi.org/10.1016/j.oceaneng.2020.107470.
  9. Hildebrandt, A. (2013), Hydrodynamics of breaking waves on offshore wind turbine structures, (Doctoral dissertation, Hannover: Gottfried Wilhelm Leibniz Universitat Hannover).
  10. Jian, W., Cao, D., Lo, E.Y., Huang, Z., Chen, X., Cheng, Z. and Li, B. (2017), "Wave runup on a surging vertical cylinder in regular waves", Appl. Ocean Res., 63, 229-241. https://doi.org/10.1016/j.apor.2017.01.016.
  11. Kamath, A., Chella, M.A., Bihs, H. and Arntsen, O.A. (2016), "Breaking wave interaction with a vertical cylinder and the effect of breaker location", Ocean Eng., 128, 105-115. https://doi.org/10.1016/j.oceaneng.2016.10.025.
  12. Kriebel, D.L. (1998), "Nonlinear wave interaction with a vertical circular cylinder: Wave forces", Ocean Eng., 25(7), 597-605. https://doi.org/10.1016/S0029-8018(97)00029-2
  13. Kriebel, DL. (1992), "Nonlinear wave interaction with a vertical circular cylinder. Part II: Wave run-up", Ocean Eng., 19(1), 75-99. https://doi.org/10.1016/0029-8018(92)90048-9.
  14. Manjula, R., Sannasiraj, S.A. and Palanichamy, K. (2013), "Laboratory measurements of breaking wave impact pressures on a slender cylindrical member", Int. J. Ocean Clim. Syst., 4, 151-169. https://doi.org/10.1260/1759-3131.4.3.151.
  15. Mase, H., Kosho, K. and Nagahashi, S. (2001), "Wave runup of random waves on a small circular pier on a sloping seabed", J. Waterw. Port Coast. Ocean Eng., 127(4), 192-199. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:4(192).
  16. Ochi, M.K. and Tsai, C.H. (1984), "Prediction of impact pressure induced by breaking waves on vertical cylinders in random seas", Appl. Ocean Res., 6(3), 157-165. https://doi.org/10.1016/0141-1187(84)90005-1.
  17. Oumeraci, H. (1994), "Review and analysis of vertical breakwater failures-lessons learned", Coast. Eng., 22(1-2), 3-29. https://doi.org/10.1016/0378-3839(94)90046-9.
  18. Sawaragi, T. and Nochino, M. (1984), "Impact forces of nearly breaking waves on a vertical circular cylinder", Coast. Eng. Jap., 27, 249-263. https://doi.org/10.1080/05785634.1984.11924391.
  19. Tanimoto, K., Takahashi, S., Kaneko, T. and Shiota, K. (1986), Impulsive pressure of breaking wave on piles, in: All Days. SPE, 492-496.
  20. Vested, M.H., Carstensen, S. and Christensen, E.D. (2020), "Experimental study of wave kinematics and wave load distribution on a vertical circular cylinder", Coast. Eng., 157, 103660. https://doi.org/10.1016/j.coastaleng.2020.103660.
  21. Wienke, J. and Oumeraci, H. (2005), "Breaking wave impact force on a vertical and inclined slender piletheoretical and large-scale model investigations", Coast. Eng., 52(5), 435-462. https://doi.org/10.1016/j.coastaleng.2004.12.008.
  22. Zhu, J., Gao, Y., Wang, L. and Li, W. (2022), "Experimental investigation of breaking regular and irregular waves slamming on an offshore monopile wind turbine", Mar. Struct., 86, 103270. https://doi.org/10.1016/j.marstruc.2022.103270.