DOI QR코드

DOI QR Code

Service life of concrete culverts repaired with biological sulfate-resisting mortars

  • Hyun-Sub, Yoon (Department of Architectural Engineering, Kyonggi University) ;
  • Keun-Hyeok, Yang (Department of Architectural Engineering, Kyonggi University) ;
  • Nguyen, Van Tuan (Faculty of Building Materials, Hanoi University of Civil Engineering) ;
  • Seung-Jun, Kwon (Department of Civil and Environmental Engineering, Hannam University)
  • Received : 2022.04.15
  • Accepted : 2022.10.25
  • Published : 2022.12.25

Abstract

The purpose of this study is to examine the effectiveness of biological repairing mortars on restoring the structural performance of a sewage culvert deteriorated by sulfate attack. The biological mortars were developed for protecting concrete structures exposed to sulfate attack based on the block membrane action of the bacterial glycocalyx. The diffusion coefficient of sulfate ions in the biological mortars was determined from the natural diffusion cell tests. The effect of sulfate-attack-induced concrete deterioration on the structural performance of culverts was examined by using the moment-curvature relationship predicted based on the nonlinear section lamina approach considering the sulfuric-acid-induced degradation of the structure. Typical analytical assessments showed that biological mortars were quite effective in increasing the sulfate-resistant service life of sewage culverts.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. NRF-2020K1A3A1A05103600) and Ministry of Science and Technology of Vietnam (the research project 19/2021/HD-NDT).

References

  1. ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19), American Concrete Institute (ACI), Michigan, USA.
  2. Ary, C., Buenfeld, N.R. and Newmann, J. (1990), "Factors influencing chloride binding in concrete", Cement Concrete Res., 20, 291-300. https://doi.org/10.1016/0008-8846(90)90083-A.
  3. ASTM International (2012), ASTM C618, C989, C39, Annual Book of ASTM Standards, American Society for Testing and Materials, Pennsylvania, USA.
  4. Atkinson, A. and Hearne, J.A. (1989), "Mechanistic model for the durability of concrete barriers exposed to sulfate-bearing groundwaters", MRS Online Proc. Libr. Arch., 176, 149-156. https://doi.org/10.1557/PROC-176-149.
  5. Baji, H. and Ronagh, H.R. (2015), "Probabilistic models for curvature ductility and moment redistribution of RC beams", Comput. Concrete, 16(2), 191-207. https://doi.org/10.12989/cac.2015.16.2.191.
  6. Clifton, J.R. and Knab, L.I. (1989), Service Life of Concrete, National Institute of Standards and Technology, Washington DC, USA.
  7. Comite Euro-International du Beton (2010), fib Model Code for Concrete Structures 2010, International Federation for Structural Concrete (fib), Lausanne, Switzerland.
  8. De Belie, N., Monteny, J., Beeldens, A., Vincke, E., Van Gemert, D. and Verstraete, W. (2004), "Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes", Cement Concrete Res., 34, 2223-2236. https://doi.org/10.1016/j.cemconres.2004.02.015.
  9. European Committee for Standardization (2004), Eurocode 2: Design of Concrete Structure (EN-1992-1-1), Comite Europeen de Normalisation (CEN), Brussels, Belgium.
  10. Ishida, T. and Maekawa, K. (2003), "Modeling of durability  performance of cementitious materials and structures based on thermo-hygro physics", Proceedings of the 2nd International RILEM Workshop on Life Prediction and Aging Management of Concrete Structures, Paris, France, May.
  11. Jiang, C., Jiang, L., Li, S., Tang, X. and Zhang, L. (2021), "Impact of cation type and fly ash on deterioration process of high belite cement pastes exposed to sulfate attack", Const. Build. Mater., 286, 122961. https://doi.org/10.1016/j.conbuildmat.2021.122961.
  12. Korea Agency for Technology and Standards (2016), Standard for Durability Design of Concrete Structures (KDS 14 20 40), Korea Construction Standards Center (KCSC), Goyang, Korea.
  13. Korea Agency for Technology and Standards (2021), Standards for Structure Design of Box Culvert(KDS 44 90 00), Korea Construction Standards Center (KCSC), Goyang, Korea.
  14. Kumar, P. (2006), "Effect of strain ratio variation on equivalent stress block parameters for normal weight high strength concrete", Comput. Concrete, 3(1), 17-28. https://doi.org/10.12989/cac.2006.3.1.017.
  15. Kwon, S.J. and Song, H.W. (2010), "Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling", Cement Concrete Res., 40(1), 119-127. https://doi.org/10.1016/j.cemconres.2009.08.022.
  16. Lee, H.J., Cho, M.S., Lee, J.S. and Kim, D.G. (2013), "Prediction model of life span deterioration under sulfate attack regarding diffusion rate by amount of sulfate ions in seawater", Int. J. Mater. Mech. Manuf., 1(3), 251-255.
  17. Monteny, J., Vincke, E., Beeldens, A., De Belie, N., Taerwe, L., Van Gemert, D. and Verstraete, W. (2000) "Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete", Cement Concrete Res., 30, 623-634. https://doi.org/10.1016/S0008-8846(00)00219-2.
  18. Park, R. and Paulay, T. (1975), Reinforced Concrete Structures, John Wiley & Sons, Inc., New York, USA.
  19. Park, S.S., Kwon, S.J. and Jung, S.H. (2012), "Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation", Constr. Build. Mater., 29, 183-192. https://doi.org/10.1016/j.conbuildmat.2011.09.019.
  20. Song, H.W. and Kwon, S.J. (2007), "Permeability characteristics of carbonated concrete considering capillary pore structure", Cement Concrete Res., 37(6), 909-915. https://doi.org/10.1016/j.cemconres.2007.03.011.
  21. Tritthart, J. (1989), "Chloride binding in cement, II. The influence of hydroxide concentration in the pore solution of hardened cement paste on chloride binding", Cement Concrete Res., 19, 683-691. https://doi.org/10.1016/0008-8846(89)90039-2.
  22. Vijay, K., Murmu, M. and Deo, S.V. (2017), "Bacteria based self healing concrete-A review", Constr. Build. Mater., 152, 1008-1014. https://doi.org/10.1016/j.conbuildmat.2017.07.040.
  23. Yang, K.H. and Kang, T.H.K. (2011), "Equivalent-strain distribution factor for unbonded tendon stress at ultimate", ACI Struct. J., 108(2), 217-226.
  24. Yang, K.H., Kwon, S.J. and Yoon, H.S. (2021), "Enhancement of strength and resistance to sulfate attack in bio-coating material through negative pressure method for bacteria immobilization", Appl. Sci., 11(9), 9113. https://doi.org/10.3390/app11199113.
  25. Yang, K.H., Lim, H.S. and Kwon, S.J. (2020), "Effective bio-slime coating technique for concrete surfaces under sulfate attack", Mater., 13(7), 1512. https://doi.org/10.3390/ma13071512.
  26. Yang, K.H., Mun, J.H., Cho, M.S. and Kang, T.H.K. (2014), "A stress-strain model for various unconfined concrete in compression", ACI Struct. J., 111(4), 819-826.
  27. Yang, K.H., Yoon, H.S. and Lee, S.S. (2018), "Feasibility tests toward the development of protective biological coating mortars", Constr. Build. Mater., 181, 1-11. https://doi.org/10.1016/j.conbuildmat.2018.06.027.
  28. Yoon, H.S. (2021), "Characteristics of biomimetic protective coating materials using bacteria slime immobilized by negative pressure for concrete exposed to sulfate attack", Ph.D. Dissertation, Kyonggi University, Suwon.
  29. Yoon, H.S., Yang, K.H. and Lee, S.S. (2021), "Evaluation of sulfate resistance of protective biological coating mortars", Constr. Build. Mater., 270, 121381. https://doi.org/10.1016/j.conbuildmat.2020.121381.
  30. Zhang, M., Yang, M.L., Guo, J.J., Liu, W.L. and Chen, H.L. (2018), "Mechanical properties and service life prediction of modified concrete attacked by sulfate corrosion", Adv. Civil Eng., 2018, 1-7. https://doi.org/10.1155/2018/8907363.