DOI QR코드

DOI QR Code

Mechanical and durability of geopolymer concrete containing fibers and recycled aggregate

  • Abdelaziz Yousuf, Mohamed (Civil Engineering Department, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus) ;
  • Orhan, Canpolat (Civil Engineering Department, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus) ;
  • Mukhallad M., Al-Mashhadani (Civil Engineering Department, Architecture and Engineering Faculty, Istanbul Gelisim University, Avcilar Campus)
  • Received : 2021.09.28
  • Accepted : 2022.10.28
  • Published : 2022.12.25

Abstract

Recently, the interminable ozone depletion and the global warming concerns has led to construction industries to seek for construction materials which are eco-friendly. Regarding this, Geopolymer Concrete (GPC) is getting great interest from researchers and scientists, since it can operate by-product waste to replace cement which can lead to the reduction of greenhouse gas emission through its production. Also, compared to ordinary concrete, geopolymer concrete belongs improved mechanical and durability properties. In spite of its positive properties, the practical use of geopolymer concrete is currently limited. This is primarily owing to the scarce structural, design and application knowledge. This study investigates the Mechanical and Durability of Geopolymer Concrete Containing Fibers and Recycled Aggregate. Mixtures of elastoplastic fiber reinforced geopolymer concrete with partial replacement of recycled coarse aggregate in different proportions of 10, 20, 30, and 40% with natural aggregate were fabricated. On the other hand, geopolymer concrete of 100% natural aggregate was prepared as a control specimen. To consider both strength and durability properties and to evaluate the combined effect of recycled coarse aggregate and elastoplastic fiber, an elastoplastic fiber with the ratio of 0.4% and 0.8% were incorporated. The highest compressive strength achieved was 35 MPa when the incorporation of recycled aggregates was 10% with the inclusion of 0.4% elastoplastic fiber. From the result, it was noticed that incorporation of 10% recycled aggregate with 0.8% of the elastoplastic fiber is the perfect combination that can give a GPC having enhanced tensile strength. When specimens exposed to freezing-thawing condition, the physical appearance, compressive strength, weight loss, and ultrasonic pulse velocity of the samples was investigated. In general, all specimens tested performed resistance to freezing thawing. the obtained results indicated that combination of recycled aggregate and elastoplastic fiber up to some extent could be achieved a geopolymer concrete that can replace conventional concrete.

Keywords

Acknowledgement

This work was supported by the research fund of the Yildiz Technical University; the authors would like to express their sincere gratitude to the scientific research coordination unit for their financial support of the project (Project number: FBA-2019-3558).

References

  1. Al-Majidi, M.H., Lampropoulos, A. and Cundy, A.B. (2017), "Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties", Constr. Build. Mater., 139, 286-307. https://doi.org/10.1016/j.conbuildmat.2017.02.045.
  2. ASTM C33/C33M-11a (2011), Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA.
  3. ASTM C618 (2012), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA.
  4. Babu, S., Fazal, N., Genie Beneacos, D., Murugalingam M. and Kirubakaran, M. (2017), "Experimental investigation on strength characteristics of geopolymer concrete with partial replacement of coarse aggregate with recycled coarse aggregate", Int. J. Innov. Res. Sci., Eng. Technol., 6(3).
  5. Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb CO2 emissions in cement industry", J. Clean. Prod., 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049.
  6. BS EN 12390-3 (2009), Testing Hardened Concrete, Compressive Strength of Test Specimens, British Standard Institution, London.
  7. BS EN 13892-3 (2014), Methods of Test for Screed Materials Part 3: Determination of Wear Resistance-Bohme, British Standard Institution, London.
  8. Davidovits, J. (1994), "Global warming impact on the cement and aggregates industries", World Resour. Rev., 6(2), 263-278.
  9. Gebretsadik, B.T. (2013), "Ultrasonic pulse velocity investigation of steel fiber reinforced self-compacted concrete", Ph.D. Dissertations, University of Nevada, Las Vegas, 1828.
  10. Hu, Y., Tang, Z., Li, W., Li, Y. and Tam, V. (2019), "Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates", Constr. Build. Mater., 226, 139-15. https://doi.org/10.1016/j.conbuildmat.2019.07.211.
  11. JSCE-SF4 (1984), Standard for Flexural Strength and Flexural Toughness, Method of Tests for Steel Fiber Reinforced Concrete, In Concrete library of JSCE, Japan Concrete Institute, Japan.
  12. Kannan, S., Arunachalam, K. and Brindha, D. (2020), "Performance analysis of recycled aggregate concrete with chemical admixture", Struct. Concrete, 22, E8-E21. https://doi.org/10.1002/suco.201900380.
  13. Kong, D. and Sanjayan, J. (2008), "Damage behavior of geopolymer composites exposed to elevated temperatures", Cement Concrete Compos., 30(10), 986-991. https://doi.org/10.1016/j.cemconcomp.2008.08.001.
  14. Kou, S., Poon, C. and Etxeberria, M. (2014), "Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures", Cement Concrete Compos., 53, 73-82. https://doi.org/10.1016/j.cemconcomp.2014.06.001.
  15. Kthangamanibindhu, M. and Murthy, D. (2015), "An experimental investigation on the mechanical properties of geopolymer concrete partially replaced with recycled coarse aggregates", Int. J. Scientif. Eng. Res., 6(8), 311-323.
  16. Kuranli, M.F., Uysal, M. and Canpolat, O. (2022), "Mechanical and durability properties of slag/fly ash based alkali-activated concrete reinforced with steel, polypropylene and polyamide fibers", Eur. J. Environ. Civil Eng., 1-24. https://doi.org/10.1080/19648189.2022.2026823.
  17. Lei, B., Li, W., Liu, H., Tang, Z. and Tam, V.W. (2020), "Synergistic effects of polypropylene and glass fiber on mechanical properties and durability of recycled aggregate concrete", Int. J. Concrete Struct. Mater., 14(1), 1-14. https://doi.org/10.1186/s40069-020-00411-2.
  18. Liu, Z., Cai, C., Peng, H. and Fan, F. (2016), "Experimental study of the geopolymeric recycled aggregate concrete", J. Mater. Civil Eng., 28(9), 04016077. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001584.
  19. Mane, S. and Jadhav, H. (2012), "Investigation of geopolymer mortar and concrete under high temperature", Int. J. Emerg. Technol. Adv. Eng., 2(12), 2250-2459.
  20. Mehta, K.P. (2001), "Reducing the environmental impact of concrete", Concrete Int., 23(10), 61-66.
  21. Mohanty, T., Saha, S., Saha, P. and Das, B. (2019), "Structural behaviour of concrete with fly-ash and ferrochrome ash as partial replacement of cement", Int. J. Recent Technol. Eng. (IJRTE), 8(4), 11086-11091. https://doi.org/10.35940/ijrte.d4552.118419.
  22. Nazarpour, H. and Jamali, M. (2019), "Mechanical and freezing cycle's properties of geopolymer concrete with recycled aggregate", Struct. Concrete, 21(3), 1004-1012. https://doi.org/10.1002/suco.201900317.
  23. Nis, A., Eren, N.A. and Cevik, A. (2022), "Effects of recycled tyre rubber and steel fibre on the impact resistance of slag-based self-compacting alkali-activated concrete", Eur. J. Environ. Civil Eng., 1-19. https://doi.org/10.1080/19648189.2022.2052967.
  24. Nuaklong, P., Sata, V. and Chindaprasirt, P. (2016), "Influence of fly ash on the performance of recycled aggregate concrete", J. Clean. Prod., 112(4), 2300-2307. https://doi.org/10.1016/j.jclepro.2015.10.109.
  25. Parthiban, K. and Saravana Raja Mohan, K. (2017), "Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete", Constr. Build. Mater., 133, 65-72. https://doi.org/10.1016/j.conbuildmat.2016.12.050.
  26. Qi, B., Gao, J., Chen, F. and Shen, D. (2017), "Evaluation of the damage process of recycled aggregate concrete under sulfate attack and wetting-drying cycles", Constr. Build. Mater., 138, 254-262. https://doi.org/10.1016/j.conbuildmat.2017.02.022.
  27. Saha, S., Saha, D.P. and Mohanty, D.T. (2019), "Structural behaviour fly ash and ferrochrome ash based geopolymer concrete with recycled aggregate", Int. J. Recent Technol. Eng. (IJRTE), 8(4), 9329-9335. https://doi.org/10.35940/ijrte.d9513.118419.
  28. Sarker, P., Kelly, S. and Yao, Z. (2014), "Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete", Mater. Des., 63, 584-592. https://doi.org/10.1016/j.matdes.2014.06.059.
  29. Sata, V., Wongsa, A. and Chindaprasirt, P. (2013), "Properties of pervious geopolymer concrete using recycled aggregates", Constr. Build. Mater., 42, 33-39. https://doi.org/10.1016/j.conbuildmat.2012.12.046.
  30. Senthil, K., Kumar, H. and Bawa, S. (2019), "Studies on mechanical properties of geopolymer concrete using recycled concrete aggregate", UKIERI Concrete Congress 2019, NIT Jalandhar, March.
  31. Shi, X., Collins, F., Zhao, X. and Wang, Q. (2012), "Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete", J. Hazard. Mater., 237-238, 20-29. https://doi.org/10.1016/j.jhazmat.2012.07.070.
  32. Tahar, Z.E.A., Benabed, B., Kadri, E.H., Ngo, T.T. and Bouvet, A. (2020), "Rheology and strength of concrete made with recycled concrete aggregates as replacement of natural aggregates. Epitoanyag-J. Silic. Bas. Compos. Mater., 72(2), 48-58. https://doi.org/10.14382/epitoanyag-jsbcm.2020.8.
  33. Tayeh, B., Saffar, D. and Alyousef, R. (2020), "The utilization of recycled aggregate in high performance concrete: A review", J. Mater. Res. Technol., 9(4), 8469-8481. https://doi.org/10.1016/j.jmrt.2020.05.126.
  34. Ulugol, H., Gunal, M.F., Yaman, I.O., Yildirim, G. and Sahmaran, M. (2021), "Effects of self-healing on the microstructure, transport, and electrical properties of 100% construction- and demolition-waste-based geopolymer composites", Cement Concrete Compos., 121, 104081. https://doi.org/10.1016/j.cemconcomp.2021.104081.
  35. Veerendra, N. Babu, Rahul, B.G. and Kumar, Himath, Y. (2017), "Experimental study on strength and durability properties of GPC With GGBS", Int. J. Civil Eng. Technol., 8(4), 39-50.
  36. Xie, J., Wang, J., Rao, R., Wang, C. and Fang, C. (2019a), "Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate", Compos. Part B: Eng., 164, 179-190. https://doi.org/10.1016/j.compositesb.2018.11.067.
  37. Xie, J., Wang, J., Zhang, B., Fang, C. and Li, L. (2019b), "Physicochemical properties of alkali activated GGBS and fly ash geopolymeric recycled concrete", Constr. Build. Mater., 204, 384-398. https://doi.org/10.1016/j.conbuildmat.2019.01.191.