DOI QR코드

DOI QR Code

Development of Ruthenium/TEMPO/Nitrate Catalyst System for Efficient Oxidation of Isosorbide

아이소소바이드의 효과적 산화반응을 위한 루테늄/템포/나이트레이트 촉매 시스템 개발

  • Irshad, Mobina (Department of Chemical Engineering, Kangwon National University) ;
  • Yu, Jung-Ah (Department of Chemical Engineering, Kangwon National University) ;
  • Oh, Youngtak (Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Jung Won (Department of Chemical Engineering, Kangwon National University)
  • 이르샤드 모비나 (강원대학교 에너지공학부 에너지화학공학전공) ;
  • 유정아 (강원대학교 에너지공학부 에너지화학공학전공) ;
  • 오영탁 (한국과학기술원 기후환경연구소 환경복지연구단) ;
  • 김정원 (강원대학교 에너지공학부 에너지화학공학전공)
  • Received : 2022.01.06
  • Accepted : 2022.01.20
  • Published : 2022.02.10

Abstract

This research work reports the development of a Ruthenium/2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)/nitrate catalyst system for the highly selective transformation of isosorbide (1,4:3,6-dianhydro-D-glucitol) to isosorbide-diketone (2,6-dioxabicyclo (3,3,0)octan-4,8-one). Isosorbide is a critical platform molecule for future manufacturing processes. TEMPO has been utilized to convert alcohols to carbonyl compounds for a long time. The optimal chemical reaction condition was found to be when using isosorbide (0.5 mmol) with supported Ru (10 mol%), TEMPO (5 mol%), and sodium nitrate (0.03 mmol) in the presence of acetic acid (3 ml) as a solvent at 50 ℃ and 1 atm oxygen pressure. This catalyst system demonstrated good selectivity (> 97%) and yield (87%) with respect to the desired product, in addition to a putative catalytic double oxidation mechanism.

본 연구에서는 아이소소바이드(1,4:3,6-dianhydro-D-glucitol)로부터 그에 상응하는 아이소소바이드-디케톤[2,6-dioxabicyclo(3,3,0)octan-4,8-one]으로의 높은 선택적 전환을 통한 효율적인 루테늄/템포/나이트레이트 촉매 시스템 개발에 대해 보고한다. 미래의 제조 공정에서의 중요한 플랫폼 화합물 중 하나는 아이소소바이드이다. 오랜 시간 동안, TEMPO(2,2,6,6-tetramethylpiperidine-N-oxyl)는 알코올을 카보닐 화합물로 변환하는데 사용되어 왔다. 본 화학 반응에서는 산소 1atm 압력하에, Ru (10 mol%), TEMPO (5 mol%), 질산나트륨(0.03 mmol) 그리고 아이소소바이드(0.5 mmol)를 용매 아세트산(3 ml)을 사용하여 최적화되었다. 이러한 촉매 시스템은 이중 산화 촉매 반응 메커니즘에 대한 가능성뿐만 아니라, 생성물에 대한 원하는 반응물의 높은 선택성(> 97%)과 수율(87%)을 보여주었다.

Keywords

Acknowledgement

This study was supported by 2018 Research Grant (PoINT) from Kangwon National University.

References

  1. A. Fawzy, N. E. Guesmi, I. Althagafi, and B. H. Asghar, A study of the kinetics and mechanism of chromic acid oxidation of isosorbide, a chiral biomass-derived substrate, in aqueous perchlorate solution, Transit. Met. Chem., 42, 229-236 (2017). https://doi.org/10.1007/s11243-017-0126-z
  2. F. Arico, Isosorbide as biobased platform chemical: recent advances, Curr. Opin. Green Sustain. Chem., 21, 82-88 (2020). https://doi.org/10.1016/j.cogsc.2020.02.002
  3. M. Rose and R. Palkovits, Isosorbide as a renewable platform chemical for versatile applications-Quo Vadis?, ChemSusChem, 5, 167-176 (2012). https://doi.org/10.1002/cssc.201100580
  4. M. Selva, A. Perosa, D. R. Padron, and R. Luque, Applications of dimethyl carbonate for the chemical upgrading of biosourced platform chemicals, ACS Sustainable Chem. Eng., 7, 6471-6479 (2019). https://doi.org/10.1021/acssuschemeng.9b00464
  5. D. J. Saxon, A. M. Luke, H. Sajjad, W. B. Tolman, and T. M. Reineke, Next-generation polymers: isosorbide as a renewable alternative, Prog. Polym. Sci., 101, 101196-101210 (2020). https://doi.org/10.1016/j.progpolymsci.2019.101196
  6. F. A. Kucherov, L. V. Romashov, K. I. Galkin, and V. P. Ananikov, Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks, ACS Sustainable Chem. Eng., 6, 8064-8092 (2018). https://doi.org/10.1021/acssuschemeng.8b00971
  7. Y. Zhu, C. Romain, and C. K. Williams, Sustainable polymers from renewable resources, Nature, 540, 1600-1636 (2016).
  8. I. Delidovich, P. J. C. Hausoul, L. Deng, R. Pfutzenreuter, M. Rose, and R. Palkovits, Alternative monomers based on lignocellulose and their use for polymer production, Chem Rev., 116, 1540-1599 (2016). https://doi.org/10.1021/acs.chemrev.5b00354
  9. K. Gao, J. Xin, D. Yan, H. Dong, Q. Zhou, X. Lu, and S. Zhang, Direct conversion of cellulose to sorbitol via an enhanced pretreatment with ionic liquids, J. Chem. Technol. Biotechnol., 93, 2617-2624 (2018). https://doi.org/10.1002/jctb.5615
  10. P. Villo, L. Matt, L. Toom, I. Liblikas, T. Pehk, and L. Vares, Hydroformylation of olefinic derivatives of isosorbide and isomannide, J. Org. Chem., 81, 7510-7517 (2016). https://doi.org/10.1021/acs.joc.6b01179
  11. R. V. Engel, Heterogeneously Catalysed Amination and Isomerisation of Isohexides, PhD Dissertation, RWTH Aachen University, Aachen, Germany (2016).
  12. R. C. Hockett, H. G. Fletcher, E. L. Sheffield, and R. M. Goepp, Hexitol Anhydrides. The structure of isosorbide, a crystalline dianhydrosorbitol, J. Am. Chem. Soc., 68, 927-930 (1946). https://doi.org/10.1021/ja01210a003
  13. F. K. Bell, C. J. Carr, J. C. Krantz, Jr., Sugar Alcohols. XXI. A study of the effect of the anhydrides of sorbitol on the dissociation constant of boric acid, J. Phys. Chem., 44, 862-865 (1940). https://doi.org/10.1021/j150403a004
  14. G. Fleche and M. Huchette, Isosorbide. Preparation, properties and chemistry, Starch, 38, 26-30 (1986). https://doi.org/10.1002/star.19860380107
  15. C. Dussenne, T. Delaunay, V. Wiatz, H. Wyart, I. Suisse, and M. Sauthier, Synthesis of isosorbide: an overview of challenging reactions, Green Chem., 19, 5332-5344 (2017). https://doi.org/10.1039/c7gc01912b
  16. P. Stoss and R. Hemmer, 1,4:3,6-Dianhydrohexitols, Adv. Carbohydr. Chem. Biochem., 49, 93-173 (1991). https://doi.org/10.1016/S0065-2318(08)60182-1
  17. E. M. F. Muri, B. A. Abrahim, T. G. Barros, J. S. Williamson, and O. A. C. Antunes, Isomannide and Derivatives. Chemical and Pharmaceutical Applications, 1st ed., 75-83, Bentham Science Publishers, Sharjah, United Arab Emirates (2010).
  18. O. N. V. Buu, A. Aupoix, and G. Vo-Thanh, Synthesis of novel chiral imidazolium-based ionic liquids derived from isosorbide and their applications in asymmetric aza Diels-Alder reaction, Tetrahedron, 65, 2260-2265 (2009). https://doi.org/10.1016/j.tet.2009.01.055
  19. J. Gross, K. Tauber, M. Fuchs, N. G. Schmidt, A. Rajagopalan, K. Faber, W. M. F. Fabian, J. Pfeffer, T. Haas, and W. Kroutil, Aerobic oxidation of isosorbide and isomannide employing TEMPO/laccase, Green Chem., 16, 2117-2121 (2014). https://doi.org/10.1039/C3GC41855C
  20. F. Jacquet, C. Granado, L. Rigal, and A. Gaset, The catalytic oxidation of 4,8-dihydroxy-2,6-dioxabicyclo [3.3.0] octane (IR, 4S, 5R, 8R) on platinum in the presence of oxygen: a study of the influence of the major parameters, Appl. Catal., 18, 157-172 (1985). https://doi.org/10.1016/S0166-9834(00)80306-1
  21. F. Jacquet, R. Audinos, M. Delmas, and A. Gaset, Analytical techniques suitable for the study of the oxidation of a biomass issued substrate: 4,8-dihydroxy-2,6-dioxabicyclo [3.3.0] octane (IR, 4S, 5R, 8R), Biomass, 6, 193-209 (1985). https://doi.org/10.1016/0144-4565(85)90040-X
  22. U. Dingerdissen, J. Pfeffer, T. Tacke, T. Haas, H. Schmidt, M. Volland, M. Rimbach, C. Lettmann, R. Sheldon, and M. Janssen, Method for producing 2,6-dioxabicyclo-(3.3.0)-octane-4,8-dione, US Patent 8,378,127B2 (2013).
  23. J. Xi, Y. Zhang, D. Ding, Q. Xia, J. Wang, X. Liu, G. Lu, and Y. Wang, Catalytic production of isosorbide from cellulose over mesoporous niobium phosphate-based heterogeneous catalysts via a sequential process, Appl. Catal. A Gen., 469, 108-115 (2014). https://doi.org/10.1016/j.apcata.2013.08.049
  24. H. Zia, J. K. H. Ma, J. P. O'Donnell, and L. A. Luzzi, Cosolvency of dimethyl isosorbide for steroid solubility, Pharm. Res., 8, 502-504 (1991). https://doi.org/10.1023/A:1015807413141
  25. A. Dijksman, A. Marino-Gonza'lez, A. M. Payeras, I. Arends, and R. A. Sheldon, Efficeint and selective aerobic oxidation of alcohols into aldehydes and ketones using Ruthenium/TEMPO as the catalytic system, J. Am. Chem. Soc., 123, 6826-6833 (2001). https://doi.org/10.1021/ja0103804
  26. M. V. N. D. Souza, TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) an important reagent in alcohol oxidation and its application in synthesis of natural products, Mini-Reviews in Org. Chem., 3, 155-165 (2006). https://doi.org/10.2174/157019306776819244