DOI QR코드

DOI QR Code

Study on Plant Indicator Species of Picea jezoensis (Siebold & Zucc.) Carrière Forest by Topographic Characters - From China (Baekdu-san) to South Korea -

가문비나무림의 지형특성에 따른 식물 지표종에 관한 연구 - 중국 백두산 일대에서 남한까지 -

  • Byeong-Joo, Park (Baekdudaegan National Arboretum, Korea Arboreta and Gardens Institute) ;
  • Tae-Im, Heo (Baekdudaegan National Arboretum, Korea Arboreta and Gardens Institute) ;
  • Jun-Gi, Byeon (Baekdudaegan National Arboretum, Korea Arboreta and Gardens Institute) ;
  • Kwang-il, Cheon (Ecosystem Service team, National Institute of Ecology)
  • 박병주 (한국수목원정원관리원 국립백두대간수목원) ;
  • 허태임 (한국수목원정원관리원 국립백두대간수목원) ;
  • 변준기 (한국수목원정원관리원 국립백두대간수목원) ;
  • 천광일 (국립생태원 생태계서비스팀)
  • Received : 2022.10.06
  • Accepted : 2022.10.31
  • Published : 2022.12.31

Abstract

This study was conducted to select the indicator species (plant) according to the topographical characteristics in the Picea jezoensis forests, endangered subalpine coniferous trees. In South Korea and China (close to Baekdusan), the southern tree line limit of Picea jezoensis has meaningful geographical and latitudinal values for analyzing the ecological characteristics of P. jezoensis forests. Latitude greatly affects the geographical values of plant ecology, and the difference in latitude and habitat affects the change in species composition in forests. With prolonged environmental change, the habitat of subalpine plants will become smaller, and the plants may become extinct. As the P. jezoensis forests of South Korea and China, in particular, are in danger of disappearing without protection, it is important to monitor the population and develop a conservation strategy. Eighty-seven circular plots were established in P. jezoensis forests in South Korea and China. Through processes such as MRPP-test and NMS ordination, indicator species were selected based on this, and basic data for biodiversity assessment were presented. As a result of the Indicator Species Analysis (ISA), 5 taxa were selected from the upperstory vegetation and 18 taxa from the understory vegetation at the altitude(p<0.05). Indicator species by aspect were analyzed as 3 taxa for upperstory vegetation and 16 taxa for understory vegetation (p<0.05). In the case of indicator species according to the slope, 6 taxa for upper vegetation and 24 taxa for understory vegetation were selected(p<0.05). As for the indicator species according to their habitat, 8 taxa in upper vegetation and 65 taxa on understory vegetation were selected. As a result of MRPP-test, it was analyzed that the species composition was heterogeneous in the group of understory vegetation than that of upperstory vegetation. As a result of NMS ordination, the correlation with environmental factors of indicator species was analyzed by rock exposure for upperstory vegetation and latitude for understory vegetation (cut off level=0.3).

이번 연구는 멸종위기에 처한 아고산 침엽수인 가문비나무의 지형특성에 따른 지표종을 선정하고, 생물다양성 평가에 필요한 과학적 근거자료를 마련하고자 진행되었다. 남한과 중국 내 가문비나무림은 남방한계선으로 지리적 가치가 높은 지역이다. 위도는 식물생태계의 지리적 가치에 큰 영향을 미치며, 위도와 서식지의 차이는 산림의 종구성 변화에 영향을 미친다. 지리적 차이뿐 아니라 환경변화로 아고산 식물서식지는 점차 쇠퇴하여 결국 멸종위기에 처한다. 이러한 측면에서, 지리적 가치가 높은 한국과 중국의 가문비나무림에 대한 개체군 모니터링으로 지표종을 선정할 필요가 있으며, 지표종에 대한 다양한 분석을 통해 생물다양성 평가의 기초자료를 구축할 필요가 있다. 개체군 모니터링은 한국과 중국의 가문비나무림에 87개의 원형조사구(400m2)를 설치하여 수행하였고, MRPP-test, NMS ordination 등의 과정을 통해 이에 근거하여 지표종을 선정 한 후 생물다양성 평가의 기초자료를 제시하였다. 지표종분석(Indicator Species Analysis) 결과, 해발고도별 지표종으로 상층식생에서 5분류군, 하층식생에서 18분류군을 선정하였다(p<0.05). 사면방위별 지표종으로는 상층식생 3분류군, 하층식생 16분류군을 선정하였다(p<0.05). 사면경사도별 지표종으로는 상층식생 6분류군, 하층식생 24분류군을 선정하였다(p<0.05). 자생지별 지표종으로는 상층식생 8분류군과 하층식생 65분류군을 선정하였다. 지표종들에 대한 MRPP-test 결과, 상층식생보다 하층식생에서 종조성이 다소 이질적인 것으로 분석되었다. NMS ordination 결과, 상층식생의 암석노출도와 하층식생의 위도에 따라 지표종의 환경적 요인과의 상관관계가 유의한 것으로 나타났다.

Keywords

References

  1. Aizawa M, Yoshimaru H, Saito H, Katsuki T, Kawahara T, Kitamura K, Shi F, Sabirov R, Kaju M. 2009. Range-wide genetic structure in a north-east Asian spruce (Picea jezoensis) determinged using nuclear microsatellite markers. J. Biogeogr. 36: 996-1007. https://doi.org/10.1111/j.1365-2699.2008.02074.x
  2. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberer T, Rigling A, Breshears DD, Hong EH. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change resks for forests. For. Ecol. Manag. 259: 660-684. https://doi.org/10.1016/j.foreco.2009.09.001
  3. Braun-Blanquet J. 1965. Pflanzensoziologie, Grundzfige der Vegetationskunde, 3rd ed. New york: Springer.
  4. Barrows CW, Swartz MB, Hodges WL, Allen MF, Rotenberry JT, Li BL, Scott TA, Chen X. 2005. A Framework for Monitoring Multiple-species Conservation Plans. J. Wildl. Manag 69(4): 1333-1345. https://doi.org/10.2193/0022-541X(2005)69[1333:AFFMMC]2.0.CO;2
  5. Chao A. 1984. Nonparametric Estimation of the Number of Class in Population. Scand. J. Stat. 11: 265-270.
  6. Cho MG, Chung JM, Kim TW, Kim CY, Noh I, Moon HS. 2015. Ecological Characteristic of Abies koreana Forest on Seseok in Mt. Jiri. J. Climate Change Res. 6(4): 379-388 [Korean Literature] https://doi.org/10.15531/KSCCR.2015.6.4.379
  7. Diekmann M. 2003 Species indicator values as an important tool in applied plant ecology- a review. Basic Appl Ecol 4(6): 493-506. https://doi.org/10.1078/1439-1791-00185
  8. Dufrene M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67: 345-366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
  9. Edward ECC, Richard TB. 1989. Secondary Succession, Gap Dynamics, and Community Structure in a Southern Appalachian Cove Forest. Ecol. 70(3): 728-735. https://doi.org/10.2307/1940223
  10. Germino MJ, Smith WK, Resor AC. 2002. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol. 162: 157-168. https://doi.org/10.1023/A:1020385320738
  11. Grumbine RE. 1994. What is ecosystem management?. Conser. Biol. 8: 27-38. https://doi.org/10.1046/j.1523-1739.1994.08010027.x
  12. Han AR, Lee SK, Suh GU, Park Y, Park PS. 2012. Wind and tophography influence the crown growth of Picea jezoensis in a subalpine forest on Mt. Deogyu, Korea. Agric For Meteorol. 166-167: 207-214. https://doi.org/10.1016/j.agrformet.2012.07.017
  13. Hasegawa SF, Mori A. 2007. Structural characteristics of Abies mariesii saplings in a snowy subalpine parkland in central Japan. Tree Physiol. 27(1): 141-148.
  14. Hunziker U, Brang P. 2005 Microsite patterns of conifer seedling establishment and growth in a mixed stand in the southern Alps. For. Ecol. Manag. 210: 67-79. https://doi.org/10.1016/j.foreco.2005.02.019
  15. IUCN [Internet]. The IUCN redlist of threatened species: [cited 2022 June 11]. Available from: http://www.Iucnredlist.org
  16. Kim JW, Lee YG. 2006. Classification and Assessment of Plant Communities. World science. [Korean Literature]
  17. Kong WS. 2002. Species composition and distribution of Korean Alpine Plants. Journal of Korean Geographical Society 37: 357-370. [Korean Literature]
  18. Korea Fern Society. 2005. Ferns and Fern Allies of Korea. Geobook. [Korean Literature]
  19. Korea Meteorological Administration [Internet]. Climate data in South Korea: [cited 2022 Mar 23]. Available from: http://www.kma.go.kr
  20. Korea National Arboretum. Knowledge system of National species in Korea; [cited 2022 Aug 16]. Available from: http://www.nature.go.kr/kpni
  21. Lee DK, Kim JU. 2007. Vulnerability Assessment of Sub-Alpine Vegetations by climate Change in Korea. JKSEE 10(6): 110-119. [Korean Literature]
  22. Lee TB. 2003a. Coloured Flora of Korea. Volume I. Hyangmoonsa Publishing. [Korean Literature]
  23. Lee TB. 2003b. Coloured flora of Korea Volume II. Hyangmunsa Publishing. [Korean Literature]
  24. McCune B, Mefford MJ. 2006. PC-ORD Multivariate Analysis of Ecological Data, Version 5.17. Oregon: MJM Software Design.
  25. Mori A, Mizumachi E, Osono T, Doi Y. 2004. Substrate-associated seedling recruitment and establishment of major conifer species in an old-growth subalpine forest in central Japan. For. Ecol. Manag. 196(2-3): 287-297. https://doi.org/10.1016/j.foreco.2004.03.027
  26. Mueller-Dombois D, Ellenberg H. 2003. Aims and Methods of Vegetation Ecology. New york: The Blackburn Press.
  27. Nakagawa M, Kurahashi A, Kaji M, Hogetsu T. 2001. The effects of selection cutting on regeneration of Picea jezoensis and Abies sachalinensis in the sub-boreal forests of Hokkaido, northern Japan. For. Ecol. Manag. 146: 15-23. https://doi.org/10.1016/S0378-1127(00)00445-X
  28. Newton AC. 2007. Forest Ecology and Conservation. New york: Oxford University Press Inc.
  29. Odion DC, Sarr DA. 2007. Managing disturbance regimes to maintain diversity in forested ecosystems of the Pacific Northwest. For. Ecol. Manag. 246: 57-65. https://doi.org/10.1016/j.foreco.2007.03.050
  30. Park BJ, Byeon JG, Cheon K. 2019. Study of ecological niche and indicator species by landforms and altitude of forest vegetation in Mt. Myeonbong. Korean J. Plant Res. 32(4): 325-337. [Korean Literature]
  31. Salazar L, Homeier J, Kessler M, Abrahamczyk S, Lehnert M, Kromer T, Kluge J. 2015. Diversity patterns of ferns along elevational gradients in andean tropical forests. Plant Ecol Divers 8: 13-24.
  32. Scott TA, Sullivan JE. 2000. The Selection and Design of Multiple Species Preserves. Environ Manage 26(S1): S37-S53.
  33. Simon LM, Oliveira G, Barreto BS, Nabout JC, Rangel TFLVB, Diniz-Filho JAF. 2013. Effects of global climate changes on geographical distribution patterns of economically important plant species in cerrado. Rev. Arvore 37(2): 267-274.  https://doi.org/10.1590/S0100-67622013000200008