DOI QR코드

DOI QR Code

Altered synaptic connections and inhibitory network of the primary somatosensory cortex in chronic pain

  • Kim, Yoo Rim (Departments of Physiology, Seoul National University College of Medicine) ;
  • Kim, Sang Jeong (Departments of Physiology, Seoul National University College of Medicine)
  • Received : 2021.12.06
  • Accepted : 2021.12.22
  • Published : 2022.03.01

Abstract

Chronic pain is induced by tissue or nerve damage and is accompanied by pain hypersensitivity (i.e., allodynia and hyperalgesia). Previous studies using in vivo two-photon microscopy have shown functional and structural changes in the primary somatosensory (S1) cortex at the cellular and synaptic levels in inflammatory and neuropathic chronic pain. Furthermore, alterations in local cortical circuits were revealed during the development of chronic pain. In this review, we summarize recent findings regarding functional and structural plastic changes of the S1 cortex and alteration of the S1 inhibitory network in chronic pain. Finally, we discuss potential neuromodulators driving modified cortical circuits and suggest further studies to understand the cortical mechanisms that induce pain hypersensitivity.

Keywords

Acknowledgement

This study was supported by National Research Foundation of Korea grants funded by the Korea government to YRK (NRF-2020R1I1A1A01065791) and to SJK (NRF-2018R1A5A2025964 and NRF-2017M3C7A1029611).

References

  1. Woolf CJ; American College of Physicians; American Physiological Society. Pain: moving from symptom control toward mechanismspecific pharmacologic management. Ann Intern Med. 2004;140: 441-451. https://doi.org/10.7326/0003-4819-140-8-200404200-00010
  2. Baron R. Mechanisms of disease: neuropathic pain--a clinical perspective. Nat Clin Pract Neurol. 2006;2:95-106. https://doi.org/10.1038/ncpneuro0113
  3. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10:895-926. https://doi.org/10.1016/j.jpain.2009.06.012
  4. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1-32. https://doi.org/10.1146/annurev.neuro.051508.135531
  5. Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature. 1992;355:75-78. https://doi.org/10.1038/355075a0
  6. Woodbury CJ, Kullmann FA, McIlwrath SL, Koerber HR. Identity of myelinated cutaneous sensory neurons projecting to nocireceptive laminae following nerve injury in adult mice. J Comp Neurol. 2008;508:500-509. https://doi.org/10.1002/cne.21693
  7. Kohno T, Moore KA, Baba H, Woolf CJ. Peripheral nerve injury alters excitatory synaptic transmission in lamina II of the rat dorsal horn. J Physiol. 2003;548(Pt 1):131-138. https://doi.org/10.1113/jphysiol.2002.036186
  8. Baba H, Doubell TP, Woolf CJ. Peripheral inflammation facilitates Abeta fiber-mediated synaptic input to the substantia gelatinosa of the adult rat spinal cord. J Neurosci. 1999;19:859-867. https://doi.org/10.1523/JNEUROSCI.19-02-00859.1999
  9. Gwak YS, Hulsebosch CE. Neuronal hyperexcitability: a substrate for central neuropathic pain after spinal cord injury. Curr Pain Headache Rep. 2011;15:215-222. https://doi.org/10.1007/s11916-011-0186-2
  10. Blom SM, Pfister JP, Santello M, Senn W, Nevian T. Nerve injuryinduced neuropathic pain causes disinhibition of the anterior cingulate cortex. J Neurosci. 2014;34:5754-5764. https://doi.org/10.1523/JNEUROSCI.3667-13.2014
  11. Seifert F, Maihofner C. Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci. 2009;66:375-390. https://doi.org/10.1007/s00018-008-8428-0
  12. Bak MS, Park H, Kim SK. Neural plasticity in the brain during neuropathic pain. Biomedicines. 2021;9:624. https://doi.org/10.3390/biomedicines9060624
  13. Kim CE, Kim YK, Chung G, Jeong JM, Lee DS, Kim J, Kim SJ. Large-scale plastic changes of the brain network in an animal model of neuropathic pain. Neuroimage. 2014;98:203-215. https://doi.org/10.1016/j.neuroimage.2014.04.063
  14. Eto K, Ishibashi H, Yoshimura T, Watanabe M, Miyamoto A, Ikenaka K, Moorhouse AJ, Nabekura J. Enhanced GABAergic activity in the mouse primary somatosensory cortex is insufficient to alleviate chronic pain behavior with reduced expression of neuronal potassium-chloride cotransporter. J Neurosci. 2012;32:16552-16559. https://doi.org/10.1523/JNEUROSCI.2104-12.2012
  15. Cichon J, Blanck TJJ, Gan WB, Yang G. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain. Nat Neurosci. 2017;20:1122-1132. https://doi.org/10.1038/nn.4595
  16. Wei JA, Hu X, Zhang B, Liu L, Chen K, So KF, Li M, Zhang L. Electroacupuncture activates inhibitory neural circuits in the somatosensory cortex to relieve neuropathic pain. iScience. 2021;24:102066. https://doi.org/10.1016/j.isci.2021.102066
  17. Kim SK, Kato G, Ishikawa T, Nabekura J. Phase-specific plasticity of synaptic structures in the somatosensory cortex of living mice during neuropathic pain. Mol Pain. 2011;7:87.
  18. Kim SK, Nabekura J. Rapid synaptic remodeling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain. J Neurosci. 2011;31:5477-5482. https://doi.org/10.1523/JNEUROSCI.0328-11.2011
  19. Kim SK, Hayashi H, Ishikawa T, Shibata K, Shigetomi E, Shinozaki Y, Inada H, Roh SE, Kim SJ, Lee G, Bae H, Moorhouse AJ, Mikoshiba K, Fukazawa Y, Koizumi S, Nabekura J. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest. 2016;126:1983-1997. https://doi.org/10.1172/jci82859
  20. DeFelipe J, Lopez-Cruz PL, Benavides-Piccione R, Bielza C, Larranaga P, Anderson S, Burkhalter A, Cauli B, Fairen A, Feldmeyer D, Fishell G, Fitzpatrick D, Freund TF, Gonzalez-Burgos G, Hestrin S, Hill S, Hof PR, Huang J, Jones EG, Kawaguchi Y, et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci. 2013;14:202-216. https://doi.org/10.1038/nrn3444
  21. Cichon J, Gan WB. Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity. Nature. 2015;520:180-185. https://doi.org/10.1038/nature14251
  22. Beierlein M, Gibson JR, Connors BW. Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol. 2003;90:2987-3000. https://doi.org/10.1152/jn.00283.2003
  23. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci. 2013;16:1068-1076. https://doi.org/10.1038/nn.3446
  24. Cha MH, Kim DS, Cho ZH, Sohn JH, Chung MA, Lee HJ, Nam TS, Lee BH. Modification of cortical excitability in neuropathic rats: a voltage-sensitive dye study. Neurosci Lett. 2009;464:117-121. https://doi.org/10.1016/j.neulet.2009.08.024
  25. Endo T, Spenger C, Hao J, Tominaga T, Wiesenfeld-Hallin Z, Olson L, Xu XJ. Functional MRI of the brain detects neuropathic pain in experimental spinal cord injury. Pain. 2008;138:292-300. https://doi.org/10.1016/j.pain.2007.12.017
  26. Xiong W, Ping X, Ripsch MS, Chavez GSC, Hannon HE, Jiang K, Bao C, Jadhav V, Chen L, Chai Z, Ma C, Wu H, Feng J, Blesch A, White FA, Jin X. Enhancing excitatory activity of somatosensory cortex alleviates neuropathic pain through regulating homeostatic plasticity. Sci Rep. 2017;7:12743. https://doi.org/10.1038/s41598-017-12972-6
  27. Okada T, Kato D, Nomura Y, Obata N, Quan X, Morinaga A, Yano H, Guo Z, Aoyama Y, Tachibana Y, Moorhouse AJ, Matoba O, Takiguchi T, Mizobuchi S, Wake H. Pain induces stable, active microcircuits in the somatosensory cortex that provide a therapeutic target. Sci Adv. 2021;7:eabd8261. https://doi.org/10.1126/sciadv.abd8261
  28. Eto K, Wake H, Watanabe M, Ishibashi H, Noda M, Yanagawa Y, Nabekura J. Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior. J Neurosci. 2011;31:7631-7636. https://doi.org/10.1523/JNEUROSCI.0946-11.2011
  29. Jones AF, Sheets PL. Sex-specific disruption of distinct mPFC inhibitory neurons in spared-nerve injury model of neuropathic pain. Cell Rep. 2020;31:107729. https://doi.org/10.1016/j.celrep.2020.107729
  30. Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 2003;424:938-942. https://doi.org/10.1038/nature01868
  31. Knabl J, Witschi R, Hosl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy JM, Rudolph U, Mohler H, Zeilhofer HU. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature. 2008;451:330-334. https://doi.org/10.1038/nature06493
  32. Harding EK, Salter MW. VIP cortical conductors set the tone for chronic pain. Nat Neurosci. 2017;20:1037-1038. https://doi.org/10.1038/nn.4609
  33. Pakan JM, Lowe SC, Dylda E, Keemink SW, Currie SP, Coutts CA, Rochefort NL. Behavioral-state modulation of inhibition is contextdependent and cell type specific in mouse visual cortex. Elife. 2016;5:e14985. https://doi.org/10.7554/elife.14985
  34. Gasselin C, Hohl B, Vernet A, Crochet S, Petersen CCH. Cell-typespecific nicotinic input disinhibits mouse barrel cortex during active sensing. Neuron. 2021;109:778-787.e3. https://doi.org/10.1016/j.neuron.2020.12.018
  35. Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature. 2013;503:521-524. https://doi.org/10.1038/nature12676
  36. Poorthuis RB, Enke L, Letzkus JJ. Cholinergic circuit modulation through differential recruitment of neocortical interneuron types during behaviour. J Physiol. 2014;592:4155-4164. https://doi.org/10.1113/jphysiol.2014.273862
  37. Arroyo S, Bennett C, Aziz D, Brown SP, Hestrin S. Prolonged disynaptic inhibition in the cortex mediated by slow, non-α7 nicotinic excitation of a specific subset of cortical interneurons. J Neurosci. 2012;32:3859-3864. https://doi.org/10.1523/JNEUROSCI.0115-12.2012
  38. Hedrick T, Waters J. Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors. J Neurophysiol. 2015;113:2195-2209. https://doi.org/10.1152/jn.00716.2014
  39. Brombas A, Fletcher LN, Williams SR. Activity-dependent modulation of layer 1 inhibitory neocortical circuits by acetylcholine. J Neurosci. 2014;34:1932-1941. https://doi.org/10.1523/JNEUROSCI.4470-13.2014
  40. Donoghue JP, Carroll KL. Cholinergic modulation of sensory responses in rat primary somatic sensory cortex. Brain Res. 1987;408:367-371. https://doi.org/10.1016/0006-8993(87)90407-0
  41. Morrison JH, Foote SL. Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in Old and New World monkeys. J Comp Neurol. 1986;243:117-138. https://doi.org/10.1002/cne.902430110
  42. McBurney-Lin J, Lu J, Zuo Y, Yang H. Locus coeruleus-norepinephrine modulation of sensory processing and perception: a focused review. Neurosci Biobehav Rev. 2019;105:190-199. https://doi.org/10.1016/j.neubiorev.2019.06.009
  43. Sara SJ, Bouret S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 2012;76:130-141. https://doi.org/10.1016/j.neuron.2012.09.011
  44. Yoshimura M, Furue H. In vivo electrophysiological analysis of mechanisms of monoaminergic pain inhibitory systems. Pain. 2017;158 Suppl 1:S85-S91. https://doi.org/10.1097/j.pain.0000000000000844
  45. North RA, Yoshimura M. The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. J Physiol. 1984;349:43-55. https://doi.org/10.1113/jphysiol.1984.sp015141
  46. Alba-Delgado C, Mico JA, Berrocoso E. Neuropathic pain increases spontaneous and noxious-evoked activity of locus coeruleus neurons. Prog Neuropsychopharmacol Biol Psychiatry. 2021;105:110121. https://doi.org/10.1016/j.pnpbp.2020.110121
  47. Brightwell JJ, Taylor BK. Noradrenergic neurons in the locus coeruleus contribute to neuropathic pain. Neuroscience. 2009;160:174-185. https://doi.org/10.1016/j.neuroscience.2009.02.023
  48. Alba-Delgado C, Llorca-Torralba M, Horrillo I, Ortega JE, Mico JA, Sanchez-Blazquez P, Meana JJ, Berrocoso E. Chronic pain leads to concomitant noradrenergic impairment and mood disorders. Biol Psychiatry. 2013;73:54-62. https://doi.org/10.1016/j.biopsych.2012.06.033
  49. Waterhouse BD, Mouradian R, Sessler FM, Lin RC. Differential modulatory effects of norepinephrine on synaptically driven responses of layer V barrel field cortical neurons. Brain Res. 2000;868:39-47. https://doi.org/10.1016/S0006-8993(00)02261-7
  50. Devilbiss DM, Waterhouse BD. Norepinephrine exhibits two distinct profiles of action on sensory cortical neuron responses to excitatory synaptic stimuli. Synapse. 2000;37:273-282. https://doi.org/10.1002/1098-2396(20000915)37:4<273::AID-SYN4>3.0.CO;2-#
  51. Deitcher Y, Leibner Y, Kutzkel S, Zylbermann N, London M. Nonlinear relationship between multimodal adrenergic responses and local dendritic activity in primary sensory cortices. BioRxiv. 814657 [Preprint]. 2019 [cited 2021 Dec 5]. Available from: https://doi.org/10.1101/814657.
  52. Salgado H, Garcia-Oscos F, Patel A, Martinolich L, Nichols JA, Dinh L, Roychowdhury S, Tseng KY, Atzori M. Layer-specific noradrenergic modulation of inhibition in cortical layer II/III. Cereb Cortex. 2011;21:212-221. https://doi.org/10.1093/cercor/bhq081
  53. Lamour Y, Willer JC, Guilbaud G. Rat somatosensory (SmI) cortex: I. Characteristics of neuronal responses to noxious stimulation and comparison with responses to non-noxious stimulation. Exp Brain Res. 1983;49:35-45.
  54. Chung JM, Surmeier DJ, Lee KH, Sorkin LS, Honda CN, Tsong Y, Willis WD. Classification of primate spinothalamic and somatosensory thalamic neurons based on cluster analysis. J Neurophysiol. 1986;56:308-327. https://doi.org/10.1152/jn.1986.56.2.308
  55. Kim YR, Kim CE, Yoon H, Kim SK, Kim SJ. S1 Employs featuredependent differential selectivity of single cells and distributed patterns of populations to encode mechanosensations. Front Cell Neurosci. 2019;13:132. https://doi.org/10.3389/fncel.2019.00132