DOI QR코드

DOI QR Code

Antiglycation and Protective Effect of Juglans regia L. in MGO-induced Renal cell Death

호두 열매 추출물의 메틸글라이옥살 유도 신장 세포손상 억제 효과 및 당화억제 효능

  • Received : 2022.10.14
  • Accepted : 2022.11.16
  • Published : 2022.12.31

Abstract

Methylglyoxal is a highly reactive precursor which forms advanced glycation end products (AGEs). AGEs and methylglyoxal are known to induce various diseases such as diabetes, vascular disorders, Diabetes Mellitus (DM), and neuronal disorders. Juglans regia L is an important food commonly used worldwide, having nutritious components, including phenolic compounds. Since ancient times, Juglans regia L have been differently applied by various countries for health and in diverse diseases, including arthritis, asthma, skin disorders, cancer, and diabetes mellitus. However, the effect of diabetes-induced renal damage against AGEs remains unclear. This study evaluates the anti-glycation and renal protective effects of ethanol extract of Juglans regia L against methylglyoxal-induced renal tubular epithelial cell death. Exposure to methylglyoxal resulted in reduced cell viability in NRK-52E cells, but co-treatment with Juglans regia L extracts significantly increased the cell viability. In addition, we examined the anti-glycation effect of Juglans regia L extracts. Compared to the positive control aminoguanidine and Alagebrium, treatment with Juglans regia L extracts significantly inhibited the formation of AGEs, collagen cross-linking, and breaking collagen cross-linking. Taken together, our results indicate that Juglans regia L is a potential therapeutic agent for regulating diabetic complications by exerting anti-glycation and renal protective activities.

Keywords

Acknowledgement

본 연구는 한국식품연구원 기본사업의 지원을 받아 연구되었습니다(E0212021, E0210200, E0210300)

References

  1. Ahmad T, Suzuki YJ. 2019. Juglone in oxidative stress and cell signaling. Antioxid., 8(4):91-103 https://doi.org/10.3390/antiox8040091
  2. Brandt JD, Beiser JA, Kass MA, Gordon MO. 2001. Central corneal thickness in the Ocular Hypertension Treatment Study (OHTS). Ophthalmology, 108:1779-88 https://doi.org/10.1016/S0161-6420(01)00760-6
  3. Brownlee M. 1996. Advanced glycation endproducts in diabetic complications. Curr. Opin. Endocrinol. Diabetes., 3:291-297 https://doi.org/10.1097/00060793-199608000-00003
  4. Bucala, R, Cerami A, Vlassara H. 1995 Advanced glycosylation end products in diabetic complications. Diabetes. Rev., 3: 258-268
  5. Carlstrom M, Wilcox CS, Arendshorst WJ. 2015. Renal autoregulation in health and disease. Physiol. Rev., 95(2):405-511 https://doi.org/10.1152/physrev.00042.2012
  6. Chen J, Jing J, Yu S, Song M, Tan H, Cui B, Huang L. 2016. Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor rage and nadph oxidase/jnk signaling axis. Am. J. Translat. Res., 8:2169-2178
  7. Do MH, Choi J, Kim Y, Ha SK, Yoo G, Hur J. 2020. Syzygium aromaticum reduces diabetes-induced Glucotoxicity via the NRF2/Glo1 Pathway. Planta Med., 86(12):876-883 https://doi.org/10.1055/a-1203-0452
  8. Do MH, Hur J, Choi J, Kim M, Kim MJ, Kim Y, Ha SK. 2018a. Eucommia ulmoides ameliorates glucotoxicity by suppressing advanced glycation end-products in diabetic mice kidney. Nutr., 10(3):265-273 https://doi.org/10.3390/nu10030265
  9. Do MH, Hur J, Choi J, Kim Y, Park HY, Ha SK. 2018b. Spatholobus suberectus ameliorates diabetes-induced renal damage by suppressing advanced glycation end products in db/db mice. Int. J. Mol. Sci., 19(9):2774-2782 https://doi.org/10.3390/ijms19092774
  10. Edelstein D, Brownlee M. 1992. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes. 41(1):26-29 https://doi.org/10.2337/diabetes.41.1.26
  11. Engelen L, Stehouwer CD, Schalkwijk CG. 2013. Current therapeutic interventions in the glycation pathway: Evidence from clinical studies. Diabetes Obes. Metab., 15:677-689 https://doi.org/10.1111/dom.12058
  12. Ghaderian SB, Hayati F, Shayanpour S, Mousavi SSB. 2015. Diabetes and end-stage renal disease; a review article on new concepts. J. Renal. Inj. Prev., 4:28-33 https://doi.org/10.12861/jrip.2015.07
  13. Han WQ, Xu L, Tang XF, Chen WD, Wu YJ, Gao PJ. 2018. Membrane rafts-redox signaling pathway contributes to renal fibrosis via modulation of the renal tubular epithelial-mesenchymal transition. J. Physiol., 596(16):3603-3616 https://doi.org/10.1113/JP275952
  14. Huebschman AG, Vlasara H, Regensteiner JG, Reush JE. 2006. Diabetes and advanced glycation end products. Diabetes Care, 29:1420-143
  15. Kim GH, Kim JM, Park SK, Kang JY, Han HJ, Shin EJ, Moon JH, Kim CW, Lee U, Shin EC, Heo HJ. 2020. Nutritional composition of domestic and imported walnuts (Juglans regia L). J. Korean Soc. Food Sci. Nutr., 49(6):608-616 https://doi.org/10.3746/jkfn.2020.49.6.608
  16. Kwak JS, Park M, Kwon O. 2014. The effect of walnut (Juglans regia L.) intake on improvement of blood lipid levels and vascular health: A meta-analysis. J. Nutr. Health., 47(4):236-246 https://doi.org/10.4163/jnh.2014.47.4.236
  17. Lee HHL, Lee CJ, Choi SY, Kim Y, Hur J. 2022. Inhibitory effect of sea buckthorn extracts on advanced glycation endproducts formation. Food Chem., 373:131364
  18. Li L, Tsao R, Yang R, Liu C, Zhu H, Young JC. 2006. Polyphenolic profiles and antioxidant activities of heartnut (Juglans ailanthifolia Var. cordiformis) and Persian walnut (Juglans regia L.). J. Agric. Food Chem., 54:8033-8040 https://doi.org/10.1021/jf0612171
  19. Maessen DE, Stehouwer CD, Schalkwijk CG. 2015. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin. Sci., 128:839-861 https://doi.org/10.1042/CS20140683
  20. Moldogazieva NT, Mokhosoev IM, Mel'nikova TI, Porozov YB, Terentiev A. 2019. Oxidative stress and advanced lipoxidation and glycation endproducts (ALEs and AGEs) in aging and age-related diseases Oxid Med Cell Longev., Article ID 3085756, 14
  21. Murata-Kamiya N, Kamiya H. 2001. Methylglyoxal, an endogenous aldehyde, crosslinks DNA polymerase and the substrate DNA. Nucleic Acids Res., 29:3433-3438 https://doi.org/10.1093/nar/29.16.3433
  22. Park CH, Yokozawa T, Noh JS, Oligonol. 2014. a low-molecular-weight polyphenol derived from lychee fruit, attenuates diabetes-induced renal damage through the advanced glycation end product-related pathway in db/db mice-3. J. Nutr., 144:1150-1157 https://doi.org/10.3945/jn.114.193961
  23. Sena, CM, Matafome P, Crisostomo J, Rodrigues L, Fernandes R, Pereira P, Seica RM. 2012. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol. Res., 497-506
  24. Seo YH, Kim UH, Kim KM, Hwang TY, Son HS. 2001. Physico-chemical composition and anti-allegic effects of walnut oil. J. East Asian Soc. Diet. Life, 11(3):204-208
  25. Wang HH, Lee DK, Liu M, Portincasa P, Wang DQ. 2020. Novel insights into the pathogenesis and management of the metabolic syndrome. Pediatr. Gastroenterol. Hepatol. Nutr., 23(3):189-230 https://doi.org/10.5223/pghn.2020.23.3.189