DOI QR코드

DOI QR Code

Investigation on Resistance to Hydrogen Embrittlement of High Nitrogen Austenitic Steels for Hydrogen Pipe by the Disc Pressure Test and the Tensile Test on Hydrogen Pre-charged Specimens

디스크 시험 및 수소처리 인장시험에 의한 수소배관용 고질소 스테인리스강의 내수소취성 평가 연구

  • Dong-won, Shin (Safety Research Division, Korea Gas Safety Corporation) ;
  • Min-kyung, Lee (Safety Research Division, Korea Gas Safety Corporation) ;
  • Jeong Hwan, Kim (Safety Research Division, Korea Gas Safety Corporation) ;
  • Ho-seong, Seo (Safety Research Division, Korea Gas Safety Corporation) ;
  • Jae-hun, Lee (Safety Research Division, Korea Gas Safety Corporation)
  • 신동원 (한국가스안전공사 가스안전연구원) ;
  • 이민경 (한국가스안전공사 가스안전연구원) ;
  • 김정환 (한국가스안전공사 가스안전연구원) ;
  • 서호성 (한국가스안전공사 가스안전연구원) ;
  • 이재훈 (한국가스안전공사 가스안전연구원)
  • Received : 2022.11.10
  • Accepted : 2022.12.09
  • Published : 2022.12.31

Abstract

In this study, characteristics of effect on hydrogen gas was investigated to hydrogen embrittlement by disk and tensile tests. The developed and commercial alloy was fabricated to a plate material made from an alloy ingot. The prepared materials were processed in the form of a disk to measure rupture pressure by hydrogen and helium gas at a rate of 0.1 to 1,000 bar/min. In the hydrogen pre-charged tensile test, a specimen was hydrogenated using an anode charging method, and the yield strength, ultimate tensile strength, elongation, and reduction in area rate were carried by a strain rate test. Also, the microstructure was observed to the fracture surface of the tensile test specimen. As a result, the developed materials satisfied endurable hydrogen embrittlement, and the fractured surface showed a brittleness fracture surface with a depth of several ㎛, but dimple due to ductile fracture could be observed.

본 연구에서는 디스크와 인장시험 등을 통해 수소취성에 대한 재료 특성을 평가하고자 하였다. 이를 위해 니켈 당량이 28.5 이상인 합금 조성과, 이와 유사한 상용 합금 조성 2종에 대해 합금을 제조하였고, 각 합금은 진공유도용해로(Vacuum Induction Melting, VIM)에서 개발 합금(이하 #1)과 상용 배관(이하 각각 #2, #3)을 재용해하여 주조재로 제조하였고, 주조 합금은 단조 및 압연하여 판재로 제조하였다. 디스크형태의 시편은 0.1~1000 bar/min의 속도로 수소와 헬륨으로 가압하여 파열압력을 측정하여 수소에 대한 특성을 평가하였고, 전기화학적 방법으로 수소처리한 인장시편과 비교군에 대해 항복강도, 인장강도, 연신률, 단면적 감소율을 확인하였다. 또한 인장시편은 주사전사현미경을 통해 파단면을 확인하였다. 디스크파열시험과 수소처리 한 시편의 인장시험을 통해, 본 연구를 통해 개발된 강종의 경우 상용 강종과 비교하여 유사한 수소취성 특성을 갖고 있음을 확인하였고, 파단면 또한 미세한 두께의 벽개파괴 특성을 보였지만 기계적 강도에 큰 영향을 미치지 않음에 따라 개발된 고질소 스테인리스강은 내수소취성이 우수한 것으로 평가 할 수 있었다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제입니다. (No.20203030040020)

References

  1. A. Midillia and I. Dincer, "Key strategies of hydrogen energy systems for sustainability", Int. J. Hydrogen Energy, 32, 511-524, (2007) https://doi.org/10.1016/j.ijhydene.2006.06.050
  2. D. Apostolou and G. Xydis, "A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects", Renew. Sustain. Energy Rev., 113, 109292, (2019)
  3. K. Xu, and R., "Tensile and fracture properties of carbon and low alloy steels in high pressure hydrogen", Mahendra, International Hydrogen Conference (Materials Park, OH: ASM International, 2008), 349-356, (2009)
  4. S. Kikukawa, F. Yamaga, and H. Mitsuhashi, "Risk assessment of hydrogen fueling stations for 70 MPa FCVs", Int. J. Hydrogen Energy, 33, 7129-7136, (2008) https://doi.org/10.1016/j.ijhydene.2008.08.063
  5. M. Dadfarnia, A. Nagao, S. Wang, M. L. Martin, B. P. Somerday, and P. Sofronis, "Recent advances on hydrogen embrittlement of structural materials", Int. J. Fract., 196, 223-243, (2015) https://doi.org/10.1007/s10704-015-0068-4
  6. B. H. Choe, S. W. Lee, J. K. Ahn, J. H. Lee, and T. W. Lim, "Hydrogen Induced Cracks in Stainless Steel 304 in Hydrogen Pressure and Stress Corrosive Atmosphere", Korea J. Met. Mater., 58, 653-659, (2020) https://doi.org/10.3365/kjmm.2020.58.10.653
  7. D. M. Bromley, Hydrogen Embrittlement Testing Of Austenitic Stainless Steels SUS 316 And 316L, Master thesis, 1-23, The University of British Columbia, Canada , (2005)
  8. T. Michler, C. S. Marchi, J. Naumann, S. Weber, and M. Martin, "Hydrogen environment embrittlement of stable austenitic steels", Int. J. Hydrogen Energy, 37, 16231-16246, (2012) https://doi.org/10.1016/j.ijhydene.2012.08.071
  9. D. G. Ulmer and C. J. Altstetter, "Phase relations in the hydrogen-austenite system", Acta Mater., 41, 2235-2241, (1993) https://doi.org/10.1016/0956-7151(93)90393-7
  10. S. M. Teus, V. N. Shyvanyuk, and V. G. Gavriljuk, "Hydrogen-induced 𝛾 → ε transformation and the role of ε-martensite in hydrogen embrittlement of austenitic steels", J. Mater. Sci. Eng. A, 497, 290~294, (2008). https://doi.org/10.1016/j.msea.2008.07.003
  11. V. Kain, "5 - Stress corrosion cracking (SCC) in stainless steels", Stress Corrosion Cracking, Woodhead Publishing, Elsevier, 199-244, (2011)
  12. M. Y. Panchenko, G. G. Mainer, I. A. Tumbusova, S. V. Astafurov, E. V. Melnikov, V. A. Moskvina, A. G. Burlachenko, Y. A. Mirovoy, Y. P. Mironov, N. K. Galchenko, and E. G. Astafurova, "The effect of age-hardening mechanism on hydrogen embrittlement in high-nitrogen steels", Int. J. Hydrogen Energy, 44, 20529-20544, (2019) https://doi.org/10.1016/j.ijhydene.2019.05.240
  13. K. S. Kim, J. H. Kang, and S. J. Kim, "Nitrogen effect on hydrogen diffusivity and hydrogen embrittlement behavior in austenitic stainless steels", Scr. Mater., 184, 70-73, https://doi.org/10.1016/j.scriptamat.2020.03.038
  14. M. F. Shehata, S. Schwarz, H. J. Engelmann, and M. Uhlemann, "Influence of hydrogen on mechanical properties of nitrogen supersaturated austenitic stainless steels", Mater. Sci. Tech., 13, 1016-1022, (1997) https://doi.org/10.1179/mst.1997.13.12.1016
  15. M. P. Phaniraj, H. J. Kim, J. Y. Suh, J. H. Shim, S. J. Park, and T. H. Lee, "Hydrogen embrittlement in high interstitial alloyed 18Cr10Mn austenitic stainless steels", Int. J. Hydrogen Energy, 40, 13635-13642, (2015) https://doi.org/10.1016/j.ijhydene.2015.07.163
  16. H. Kobayashi, T. Sano, H. Kobayashi, S. Matsuoka, and H. Tsujigami, "Current Status of Evaluation and Selecting of Materials to Be Used for Hydrogen Refueling Station Equipment in Japan", ASME 2017 Pressure Vessels and Piping Conference, 1A, 1-7, (2017)
  17. S. Y. Lee and B. C. Hwang, "Hydrogen Embrittlement of Three High-Manganese Steels Tested by Different Hydrogen Charging Methods", Korea J. Met. Mater., 55, 695-702, (2017)
  18. N. H. Kim, Y. J. Kim, K. B. Yoon, and Y. H. Ma, "Estimation of Elastic Plastic Behavior Fracture Toughness Under Hydrogen Condition of Inconel 617 from Small Punch Test", Trans. Korean Soc. Mech. Eng. A, 37, 753-760, (2013)
  19. H. U. Seo, Y. H. Ma, and K. B. Yoon, "Evaluation of Hydrogen Embrittlement Behavior in INCONEL Alloy 617 by Small Punch Test", Trans. of the Korean Hydrogen and New Energy Society, 21, 340-345, (2010)
  20. ISO 16573, Measurement method for the evaluation of Hydrogen embrittlement resistance of high strength steels, (2015)
  21. ISO 11114-4, Transportable gas cylinders-Compatibility of cylinder and valve materials with gas contents-Part4: Test methods for selecting steels resistant to hydrogen embrittlement, (2017)
  22. L. Briottet, I. Moro, and P. Lemoine, "Quantifying the hydrogen embrittlement of pipeline steels for safety considerations", Int. J. Hydrogen Energy, 37, 17616-17623, (2012) https://doi.org/10.1016/j.ijhydene.2012.05.143
  23. L. Briottet, R. Batisse, G. de Dinechin, P. Langlois, and L. Thiers, "Recommendations on X80 steel for the design of hydrogen gas transmission pipelines", Int. J. Hydrogen Energy, 37, 9423-9430, (2012) https://doi.org/10.1016/j.ijhydene.2012.02.009
  24. P. Bortot, M. Bellingardi, and S. Beretta., "Fitness for Purpose Design of a Steel Cylinder for Hydrogen-Natural Gas Blends", Pressure Vessels and Piping Conference, 44533, (2011)
  25. H. Li, Z. Jiang, Z. Zhang, and Y. Yang, "Effect of Grain Size on Mechanical Properties of Nickel-Free High Nitrogen Austenitic Stainless Steel", J. Iron and Steel Research International, 16, 58-61, (2009)
  26. J. T. Barnby, "The initiation of ductile failure by fractured carbides in an austenitic stainless steel", Acta Metallurgica, 15, 903-909, (1967) https://doi.org/10.1016/0001-6160(67)90372-0
  27. T. Chida, Y. Hagihara, E. Akiyama, K. Iwanaga, S. Takagi, M. Hayakawa, H. Ohishi, D. Hirakami, and T. Tarui, "Comparison of Constant Load, SSRT and CSRT Methods for Hydrogen Embrittlement Evaluation Using Round Bar Specimens of High Strength Steels", Isij International, 56, 1268-1275, (2016) https://doi.org/10.2355/isijinternational.isijint-2015-565
  28. X. Li, X. Ma, J. Zhang, E. Akiyama, Y. Wang, and X. Song, "Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention", X. Acta Metallurgica Sinica (English Letters), 33, 759-773, (2020)  https://doi.org/10.1007/s40195-020-01039-7