DOI QR코드

DOI QR Code

A DEEP LEARNING ALGORITHM FOR OPTIMAL INVESTMENT STRATEGIES UNDER MERTON'S FRAMEWORK

  • Gim, Daeyung (Division of Derivative Pricing Korea Asset Pricing) ;
  • Park, Hyungbin (Department of Mathematical Sciences and Research Institute of Mathematics Seoul National University)
  • Received : 2021.03.08
  • Accepted : 2021.07.19
  • Published : 2022.03.01

Abstract

This paper treats Merton's classical portfolio optimization problem for a market participant who invests in safe assets and risky assets to maximize the expected utility. When the state process is a d-dimensional Markov diffusion, this problem is transformed into a problem of solving a Hamilton-Jacobi-Bellman (HJB) equation. The main purpose of this paper is to solve this HJB equation by a deep learning algorithm: the deep Galerkin method, first suggested by J. Sirignano and K. Spiliopoulos. We then apply the algorithm to get the solution to the HJB equation and compare with the result from the finite difference method.

Keywords

Acknowledgement

Hyungbin Park was supported by Research Resettlement Fund for the new faculty of Seoul National University, South Korea. In addition, Hyungbin Park was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT (No. 2017R1A5A1015626, No. 2018R1C1B5085491 and No. 2021R1C1C1011675) and the Ministry of Education (No. 2019R1A6A1A10073437) through the Basic Science Research Program. Financial support from the Institute for Research in Finance and Economics of Seoul National University is gratefully acknowledged.

References

  1. Y. Achdou and O. Pironneau, Computational methods for option pricing, Frontiers in Applied Mathematics, 30, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. https://doi.org/10.1137/1.9780898717495
  2. A. Al-Aradi, A. Correia, G. Jardim, D. Naiff, and Y. Saporito, Solving nonlinear and high-dimensional partial differential equations via deep learning, arXiv preprint arXiv:1811.08782.
  3. A. Al-Aradi, A. Correia, G. Jardim, D. Naiff, and Y. Saporito, Applications of the deep Galerkin method to solving partial integro-differential and Hamilton-Jacobi-Bellman equations, arXiv preprint arXiv:1912.01455.
  4. F. E. Benth, K. H. Karlsen, and K. Reikvam, Merton's portfolio optimization problem in a Black and Scholes market with non-Gaussian stochastic volatility of Ornstein-Uhlenbeck type, Math. Finance 13 (2003), no. 2, 215-244. https://doi.org/10.1111/1467-9965.00015
  5. T. Bjork, Arbitrage Theory in Continuous Time, Oxford University Press, Oxford, 2009.
  6. L. Boccardo, A. Dall'Aglio, T. Gallouet, and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal. 147 (1997), no. 1, 237-258. https://doi.org/10.1006/jfan.1996.3040
  7. L. Boccardo, M. M. Porzio, and A. Primo, Summability and existence results for nonlinear parabolic equations, Nonlinear Anal. 71 (2009), no. 3-4, 978-990. https://doi.org/10.1016/j.na.2008.11.066
  8. R. L. Burden, J. D. Faires, and A. C. Reynolds, Numerical Analysis, Prindle, Weber & Schmidt, Boston, MA, 1978.
  9. G. Callegaro, M. Gaigi, S. Scotti, and C. Sgarra, Optimal investment in markets with over and under-reaction to information, Math. Financ. Econ. 11 (2017), no. 3, 299-322. https://doi.org/10.1007/s11579-016-0182-8
  10. R. Crisostomo, An analysis of the Heston stochastic volatility model: Implementation and calibration using Matlab, CNMV Working Paper (2014), no. 58.
  11. A. Danilova, M. Monoyios, and A. Ng, Optimal investment with inside information and parameter uncertainty, Math. Financ. Econ. 3 (2010), no. 1, 13-38. https://doi.org/10.1007/s11579-010-0025-y
  12. L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, third edition, Birkhauser/Springer, New York, 2012. https://doi.org/10.1007/978-0-8176-8265-1
  13. R. Di Nardo, F. Feo, and O. Guibe, Existence result for nonlinear parabolic equations with lower order terms, Anal. Appl. (Singap.) 9 (2011), no. 2, 161-186. https://doi.org/10.1142/S0219530511001790
  14. W. E, M. Hutzenthaler, A. Jentzen, and T. Kruse, On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations, J. Sci. Comput. 79 (2019), no. 3, 1534-1571. https://doi.org/10.1007/s10915-018-00903-0
  15. L. C. Evans, Partial Differential Equations, Amer. Math. Soc., 2002.
  16. S. Fallah and F. Mehrdoust, On the calibration of fractional two-factor stochastic volatility model with non-Lipschitz diffusions, Commun. Stat. Simul. Comput. (2020), 1-20.
  17. P. Guasoni and S. Robertson, Static fund separation of long-term investments, Math. Finance 25 (2015), no. 4, 789-826. https://doi.org/10.1111/mafi.12017
  18. J. Han, A. Jentzen, and W. E, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. USA 115 (2018), no. 34, 8505-8510. https://doi.org/10.1073/pnas.1718942115
  19. S. L. Hansen, Optimal consumption and investment strategies with partial and private information in a multi-asset setting, Math. Financ. Econ. 7 (2013), no. 3, 305-340. https://doi.org/10.1007/s11579-012-0086-1
  20. K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Netw. 4 (1991), no. 2, 251-257. https://doi.org/10.1016/0893-6080(91)90009-T
  21. C. Kuhn and M. Stroh, Optimal portfolios of a small investor in a limit order market: a shadow price approach, Math. Financ. Econ. 3 (2010), no. 2, 45-72. https://doi.org/10.1007/s11579-010-0027-9
  22. O. A. Ladyzhenskaia, V. A. Solonnikov and N. N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc., 1988.
  23. I. E. Lagaris, A. C. Likas and D. G. Papageorgiou, Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural. Netw. 11 (2000), no. 5, 1041-1049. https://doi.org/10.1109/72.870037
  24. H. Lee and I. S. Kang, Neural algorithm for solving differential equations, J. Comput. Phys. 91 (1990), no. 1, 110-131. https://doi.org/10.1016/0021-9991(90)90007-N
  25. V. Lemaire and T. Montes, Stationary Heston model: Calibration and pricing of exotics using product recursive quantization, arXiv preprint arXiv:2001.03101.
  26. Z. Liang and M. Ma, Robust consumption-investment problem under CRRA and CARA utilities with time-varying confidence sets, Math. Finance 30 (2020), no. 3, 1035-1072. https://doi.org/10.1111/mafi.12217
  27. M. Magliocca, Existence results for a Cauchy-Dirichlet parabolic problem with a repulsive gradient term, Nonlinear Anal. 166 (2018), 102-143. https://doi.org/10.1016/j.na.2017.09.012
  28. A. Malek and R. Shekari Beidokhti, Numerical solution for high order differential equations using a hybrid neural network-optimization method, Appl. Math. Comput. 183 (2006), no. 1, 260-271. https://doi.org/10.1016/j.amc.2006.05.068
  29. R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Rev. Econ. Stat. (1969), 247-257.
  30. M. Nutz, The opportunity process for optimal consumption and investment with power utility, Math. Financ. Econ. 3 (2010), no. 3-4, 139-159. https://doi.org/10.1007/s11579-010-0031-0
  31. J. L. Pedersen and G. Peskir, Optimal mean-variance portfolio selection, Math. Financ. Econ. 11 (2017), no. 2, 137-160. https://doi.org/10.1007/s11579-016-0174-8
  32. M. M. Porzio, Existence of solutions for some "noncoercive" parabolic equations, Discrete Contin. Dynam. Systems 5 (1999), no. 3, 553-568. https://doi.org/10.3934/dcds.1999.5.553
  33. C. Remani, Numerical Methods for Solving Systems of Nonlinear Equations, Lakehead University Thunder Bay, Ontario, Canada, 2013.
  34. J. Simon, Compact sets in the space Lp(0, T; B), Ann. di Mat. Pura ed Appl. 146 (1986), no. 1, 65-96. https://doi.org/10.1007/BF01762360
  35. J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018), 1339-1364. https://doi.org/10.1016/j.jcp.2018.08.029