Acknowledgement
This work was supported by 2-year Research Grant of Pusan National University.
References
- E.P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
- H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
- S.K. Berberian, Baer-rings, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- J. Bergen and P. Grzeszczuk, Skew derivations and the nil and prime radicals, Coll. Math. 128 (2012) 229-236. https://doi.org/10.4064/cm128-2-8
- G.F. Birkenmeier, Baer rings and quasi-continuous rings have a MSDN, Pac. J. Math. 97 (1981), 283-292. https://doi.org/10.2140/pjm.1981.97.283
- G.F. Birkenmeier, Decompositions of Baer-like rings, Acta Math. Hung. 59 (1992), 319-326. https://doi.org/10.1007/BF00050894
- G.F. Birkenmeier, J.Y. Kim and J.K. Park, On extensions of quasi-Baer and principally quasi-Baer rings, J. of Pure Appl. Algebra 159 (2001), 25-42. https://doi.org/10.1016/S0022-4049(00)00055-4
- W.E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424. https://doi.org/10.1215/S0012-7094-67-03446-1
- K.R. Goodearl, R.B. Warfield, An introduction to noncommutative Noetherian rings, Cambridge University Press, Cambridge, 2004.
- J. Han, Y. Hirano and H.K. Kim, Semiprime ore extensions, Comm. Algebra 28 (2000), 3795-3801. https://doi.org/10.1080/00927870008827058
- C.Y. Hong, N.K. Kim and T.K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), 215-226. https://doi.org/10.1016/S0022-4049(99)00020-1
- D.A. Jordan, , Noetherian ore extensions and Jacobson rings, J. London Math. Soc. 10 (1975), 281-291. https://doi.org/10.1112/jlms/s2-10.3.281
- I. Kaplansky, Rings of operators, Math. Lecture Notes Series, Benjamin, New York, 1965.
- T.Y. Lam, A. Leroy and J. Matczuk, Primeness, semiprimess and prime radical of ore extensions, Comm. Algebra 25 (1997), 2459-2506. https://doi.org/10.1080/00927879708826000
- J.C. McConnell, J.C. Robson, Noncommutative Noetherian rings, John Wiley & Sons Ltd. Chichester, 1987.
- L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73.
- A.R. Nasr-Isfahani and A. Moussavi, Skew Laurent polynomial extensions of Baer and p.p.-rings, Bull. Korean Math. Soc. 46 (2009), 1041-1050. https://doi.org/10.4134/BKMS.2009.46.6.1041
- P. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970), 127-138. https://doi.org/10.1215/S0012-7094-70-03718-X
- L.H. Rowen, Ring theory, Academic Press Inc., Boston, MA, 1988.
- G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.2307/1996398