DOI QR코드

DOI QR Code

ORE EXTENSIONS OVER σ-RIGID RINGS

  • Han, Juncheol (Department of Mathematics Education, Pusan National University) ;
  • Lee, Yang (Department of Mathematics, Yanbian University, Institute for Applied Mathematics and Optics, Hanbat National University) ;
  • Sim, Hyo-Seob (Department of Applied Mathematics, Pukyong National University)
  • Received : 2021.07.15
  • Accepted : 2021.09.27
  • Published : 2022.01.31

Abstract

Let R be a ring with an endomorphism σ and a σ-derivation δ. R is called (σ, δ)-Baer (resp. (σ, δ)-quasi-Baer, (σ, δ)-p.q.-Baer, (σ, δ)-p.p.) if the right annihilator of every right (σ, δ)-set (resp., (σ, δ)-ideal, principal (σ, δ)-ideal, (σ, δ)-element) of R is generated by an idempotent of R. In this paper, for a given Ore extension A = R[x; σ, δ] of R, the following properties are investigated: If R is a σ-rigid ring in which σ and δ commute, then (1) R is (σ, δ)-Baer if and only if R is (σ, δ)-quasi-Baer if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-Baer if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-quasi-Baer; (2) R is (σ, δ)-p.p. if and only if R is (σ, δ)-p.q.-Baer if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-p.p. if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-p.q.-Baer.

Keywords

Acknowledgement

This work was supported by 2-year Research Grant of Pusan National University.

References

  1. E.P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  2. H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  3. S.K. Berberian, Baer-rings, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
  4. J. Bergen and P. Grzeszczuk, Skew derivations and the nil and prime radicals, Coll. Math. 128 (2012) 229-236. https://doi.org/10.4064/cm128-2-8
  5. G.F. Birkenmeier, Baer rings and quasi-continuous rings have a MSDN, Pac. J. Math. 97 (1981), 283-292. https://doi.org/10.2140/pjm.1981.97.283
  6. G.F. Birkenmeier, Decompositions of Baer-like rings, Acta Math. Hung. 59 (1992), 319-326. https://doi.org/10.1007/BF00050894
  7. G.F. Birkenmeier, J.Y. Kim and J.K. Park, On extensions of quasi-Baer and principally quasi-Baer rings, J. of Pure Appl. Algebra 159 (2001), 25-42. https://doi.org/10.1016/S0022-4049(00)00055-4
  8. W.E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424. https://doi.org/10.1215/S0012-7094-67-03446-1
  9. K.R. Goodearl, R.B. Warfield, An introduction to noncommutative Noetherian rings, Cambridge University Press, Cambridge, 2004.
  10. J. Han, Y. Hirano and H.K. Kim, Semiprime ore extensions, Comm. Algebra 28 (2000), 3795-3801. https://doi.org/10.1080/00927870008827058
  11. C.Y. Hong, N.K. Kim and T.K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), 215-226. https://doi.org/10.1016/S0022-4049(99)00020-1
  12. D.A. Jordan, , Noetherian ore extensions and Jacobson rings, J. London Math. Soc. 10 (1975), 281-291. https://doi.org/10.1112/jlms/s2-10.3.281
  13. I. Kaplansky, Rings of operators, Math. Lecture Notes Series, Benjamin, New York, 1965.
  14. T.Y. Lam, A. Leroy and J. Matczuk, Primeness, semiprimess and prime radical of ore extensions, Comm. Algebra 25 (1997), 2459-2506. https://doi.org/10.1080/00927879708826000
  15. J.C. McConnell, J.C. Robson, Noncommutative Noetherian rings, John Wiley & Sons Ltd. Chichester, 1987.
  16. L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73.
  17. A.R. Nasr-Isfahani and A. Moussavi, Skew Laurent polynomial extensions of Baer and p.p.-rings, Bull. Korean Math. Soc. 46 (2009), 1041-1050. https://doi.org/10.4134/BKMS.2009.46.6.1041
  18. P. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970), 127-138. https://doi.org/10.1215/S0012-7094-70-03718-X
  19. L.H. Rowen, Ring theory, Academic Press Inc., Boston, MA, 1988.
  20. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.2307/1996398