DOI QR코드

DOI QR Code

WEIGHTED SOBOLEV REGULARITY OF VISCOSITY SOLUTIONS FOR FULLY NONLINEAR PARABOLIC EQUATIONS

  • Lee, Mikyoung (Department of Mathematics, Pusan National University)
  • Received : 2022.01.03
  • Accepted : 2022.01.20
  • Published : 2022.01.31

Abstract

We obtain interior regularity estimates in the weighted Orlicz spaces for viscosity solutions of fully nonlinear uniformly parabolic equations ut - F(D2 u, x, t) = f(x, t) in Q1 under relaxed structure conditions on the nonlinear operator F.

Keywords

Acknowledgement

This work was supported by Pusan National University Research Grant, 2019.

References

  1. S. Byun, M. Lee, and J. Ok, Weighted regularity estimates in Orlicz spaces for fully nonlinear elliptic equations, Nonlinear Anal., 162 (2017), 178-196. https://doi.org/10.1016/j.na.2017.06.011
  2. S. Byun, J. Ok, D.K. Palagachev, and L.G. Softova, Parabolic systems with measurable coefficients in weighted Orlicz spaces, Contemp. Math., 18 (2) (2016), 1550018, 19 pp. https://doi.org/10.1142/S0219199715500182
  3. S. Byun, J. Oh, and L. Wang, W2,p estimates for solutions to asymptotically elliptic equations in nondivergence form, J. Differential Equations 260 (2016), no. 11, 7965-7981. https://doi.org/10.1016/j.jde.2016.02.010
  4. L.A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math., 130 (1) (1989), 189-213. https://doi.org/10.2307/1971480
  5. L.A. Caffarelli, M.G. Crandall, M. Kocan, and A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math., 49 (4) (1996), 365-397. https://doi.org/10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A
  6. R. Castillo and E.A. Pimentel, Interior Sobolev regularity for fully nonlinear parabolic equations, Calc. Var. Partial Differential Equations 56 (2017) no. 5, Art. 127, 26 pp. https://doi.org/10.1007/s00526-017-1120-1
  7. M.G. Crandall, M. Kocan, P.-L. Lions, and A. Swiech, Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations, Comm. Partial Differential Equations, Electron. J. Differential Equations 24 (1999), 1-20. https://doi.org/10.1080/03605309908821416
  8. A. Fiorenza, and M. Krbec, Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolin., 38 (3) (1997), 433-451.
  9. L. Grafakos, Modern Fourier analysis, Graduate Texts in Mathematics 250, Springer, New York, 2009.
  10. J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, Studia Math., 60 (1) (1977), 33-59. https://doi.org/10.4064/sm-60-1-33-59
  11. R.A. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math., 71 (1982), 277-284. https://doi.org/10.4064/sm-71-3-277-284
  12. V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1991.
  13. M.A. Krasnoselskii and Ya.B. Rutickii, Convex Functions and Orlicz Spaces, translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961.
  14. N.V. Krylov, On the existence of W2p solutions for fully nonlinear elliptic equations under relaxed convexity assumptions, Comm. Partial Differential Equations, 38 (2013), no. 4, 687-710. https://doi.org/10.1080/03605302.2012.741177
  15. N.V. Krylov, Estimates for derivatives of the solutions of nonlinear parabolic equations, Dokl. Akad. Nauk SSSR 274 (1984), no. 1, 23-26.
  16. M. Lee, Weighted Orlicz regularity estimates for fully nonlinear elliptic equations with asymptotic convexity, Commun. Contemp. Math. 21 (2019), no. 4, 1850024, 29 pp. https://doi.org/10.1142/s0219199718500244
  17. M. Lee and J. Ok, Local estimates for fully nonlinear parabolic equations in weighted spaces , Mathematical Methods in the Applied Sciences to appear, DOI:10.1002/mma.7259
  18. E.A. Pimentel and E.V. Teixeira, Sharp Hessian integrability estimates for nonlinear elliptic equations: an asymptotic approach, J. Math. Pures Appl.,(9) 106 (2016), no. 4, 744-767. https://doi.org/10.1016/j.matpur.2016.03.010
  19. L. Silvestre and E.V. Teixeira, Regularity estimates for fully non linear elliptic equations which are asymptotically convex, Contributions to nonlinear elliptic equations and systems, 425-438, Progr. Nonlinear Differential Equations Appl., 86, Birkhauser/Springer, Cham, 2015.
  20. B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer Verlag, New York, 2000.
  21. L. Wang, On the regularity theory of fully nonlinear parabolic equations: I, Comm. Pure Appl. Math. 45 (1992), no. 1, 27-76. https://doi.org/10.1002/cpa.3160450103