Acknowledgement
This work was supported by Pusan National University Research Grant, 2019.
References
- S. Byun, M. Lee, and J. Ok, Weighted regularity estimates in Orlicz spaces for fully nonlinear elliptic equations, Nonlinear Anal., 162 (2017), 178-196. https://doi.org/10.1016/j.na.2017.06.011
- S. Byun, J. Ok, D.K. Palagachev, and L.G. Softova, Parabolic systems with measurable coefficients in weighted Orlicz spaces, Contemp. Math., 18 (2) (2016), 1550018, 19 pp. https://doi.org/10.1142/S0219199715500182
- S. Byun, J. Oh, and L. Wang, W2,p estimates for solutions to asymptotically elliptic equations in nondivergence form, J. Differential Equations 260 (2016), no. 11, 7965-7981. https://doi.org/10.1016/j.jde.2016.02.010
- L.A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math., 130 (1) (1989), 189-213. https://doi.org/10.2307/1971480
- L.A. Caffarelli, M.G. Crandall, M. Kocan, and A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math., 49 (4) (1996), 365-397. https://doi.org/10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A
- R. Castillo and E.A. Pimentel, Interior Sobolev regularity for fully nonlinear parabolic equations, Calc. Var. Partial Differential Equations 56 (2017) no. 5, Art. 127, 26 pp. https://doi.org/10.1007/s00526-017-1120-1
- M.G. Crandall, M. Kocan, P.-L. Lions, and A. Swiech, Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations, Comm. Partial Differential Equations, Electron. J. Differential Equations 24 (1999), 1-20. https://doi.org/10.1080/03605309908821416
- A. Fiorenza, and M. Krbec, Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolin., 38 (3) (1997), 433-451.
- L. Grafakos, Modern Fourier analysis, Graduate Texts in Mathematics 250, Springer, New York, 2009.
- J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, Studia Math., 60 (1) (1977), 33-59. https://doi.org/10.4064/sm-60-1-33-59
- R.A. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math., 71 (1982), 277-284. https://doi.org/10.4064/sm-71-3-277-284
- V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1991.
- M.A. Krasnoselskii and Ya.B. Rutickii, Convex Functions and Orlicz Spaces, translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961.
- N.V. Krylov, On the existence of W2p solutions for fully nonlinear elliptic equations under relaxed convexity assumptions, Comm. Partial Differential Equations, 38 (2013), no. 4, 687-710. https://doi.org/10.1080/03605302.2012.741177
- N.V. Krylov, Estimates for derivatives of the solutions of nonlinear parabolic equations, Dokl. Akad. Nauk SSSR 274 (1984), no. 1, 23-26.
- M. Lee, Weighted Orlicz regularity estimates for fully nonlinear elliptic equations with asymptotic convexity, Commun. Contemp. Math. 21 (2019), no. 4, 1850024, 29 pp. https://doi.org/10.1142/s0219199718500244
- M. Lee and J. Ok, Local estimates for fully nonlinear parabolic equations in weighted spaces , Mathematical Methods in the Applied Sciences to appear, DOI:10.1002/mma.7259
- E.A. Pimentel and E.V. Teixeira, Sharp Hessian integrability estimates for nonlinear elliptic equations: an asymptotic approach, J. Math. Pures Appl.,(9) 106 (2016), no. 4, 744-767. https://doi.org/10.1016/j.matpur.2016.03.010
- L. Silvestre and E.V. Teixeira, Regularity estimates for fully non linear elliptic equations which are asymptotically convex, Contributions to nonlinear elliptic equations and systems, 425-438, Progr. Nonlinear Differential Equations Appl., 86, Birkhauser/Springer, Cham, 2015.
- B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer Verlag, New York, 2000.
- L. Wang, On the regularity theory of fully nonlinear parabolic equations: I, Comm. Pure Appl. Math. 45 (1992), no. 1, 27-76. https://doi.org/10.1002/cpa.3160450103