DOI QR코드

DOI QR Code

Relationship between the QBO and Surface Air Temperature in the Korean Peninsula

QBO와 한반도 지상기온 간의 관계

  • Park, Chang-Hyun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University)
  • 박창현 (서울대학교 지구환경과학부) ;
  • 손석우 (서울대학교 지구환경과학부)
  • Received : 2021.11.15
  • Accepted : 2021.12.28
  • Published : 2022.03.31

Abstract

The relationship between the Quasi-Biennial Oscillation (QBO) and the surface air temperature (SAT) in the Korean Peninsula is investigated for the period of 1979~2019. The QBO shows a statistically significant causal relationship with the Korean SAT in early spring when the El Niño-Southern Oscillation (ENSO)'s effect is relatively weak. In particular, when the QBO wind at 70 hPa is westerly, the Korean SAT becomes colder than normal in March. This relationship in March, which is statistically significant, is valid not only for March QBO but also for February QBO, indicating that the QBO is leading the Korean SAT. The Granger causality test indeed shows a causal relationship between February QBO and March Korean SAT. The QBO-Korean SAT relationship is more pronounced in the southeastern part of the Korean Peninsula. As the QBO-related circulation anomalies are evident in the North Pacific and the eastern Eurasia, they induce the horizontal temperature advection to the southeastern part of the Korean Peninsula. This result suggests that the QBO could be useful for improving seasonal prediction of the Korean SAT in March.

Keywords

Acknowledgement

본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사를 드립니다. 이 논문은 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(2017R1E1A1A01074889).

References

  1. Akaike, H., 1974: A new look at the statistical model identification. IEEE T. Automat. Contr., 19, 716-723. https://doi.org/10.1109/TAC.1974.1100705
  2. Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179-229. https://doi.org/10.1029/1999RG000073
  3. Barnes, E. A., and I. R. Simpson, 2017: Seasonal sensitivity of the Northern Hemisphere jet streams to arctic temperatures on subseasonal time scales. J. Climate, 30, 10117-10137, doi:10.1175/JCLI-D-17-0299.1.
  4. Burnham, K. P., and D. R. Anderson, 2004: Multimodel inference: understanding AIC and BIC in model selection. Sociol. Method. Res., 33, 261-304. https://doi.org/10.1177/0049124104268644
  5. Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 2552-2568. https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2
  6. Ding, M., Y. Chen, and S. L. Bressler, 2006: Granger causality: basic theory and application to neuroscience. In B. Schelter et al. Eds., Handbook of time series analysis: Recent Theoretical Developments and Applications, Wiley-VCH, 437-460.
  7. Garfinkel, C. I., and D. L. Hartmann, 2011a: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs. J. Atmos. Sci., 68, 1273-1289, doi:10.1175/2011JAS3665.1.
  8. Garfinkel, C. I., and D. L. Hartmann, 2011b: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part II: Perpetual winter WACCM runs. J. Atmos. Sci., 68, 2026-2041, doi:10.1175/2011JAS3702.1.
  9. Geweke, J. F., 1984: Measures of conditional linear dependence and feedback between time series. J. Am. Stat. Assoc., 79, 907-915. https://doi.org/10.1080/01621459.1984.10477110
  10. Granger, C. W. J., 1969: Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424-438. https://doi.org/10.2307/1912791
  11. Gray, L. J., J. A. Anstey, Y. Kawatani, H. Lu, S. Osprey, and V. Schenzinger, 2018: Surface impacts of the quasi biennial oscillation. Atmos. Chem. Phys., 18, 8227-8247, doi:10.5194/acp-18-8227-2018.
  12. Guo, S., A. K. Seth, K. M. Kendrick, C. Zhou, and J. Feng, 2008: Partial Granger causality-eliminating exogenous inputs and latent variables. J. Neurosci. Methods, 172, 79-93. https://doi.org/10.1016/j.jneumeth.2008.04.011
  13. Han, B.-R., Y. Lim, H.-J. Kim, and S.-W. Son, 2018: Development and evaluation of statistical prediction model of monthly-mean winter surface air temperature in Korea. Atmosphere, 28, 153-162, doi:10.14191/Atmos.2018.28.2.153 (in Korean with English abstract).
  14. Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200-2208. https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2
  15. Holton, J. R., and H.-C. Tan, 1982: The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere. J. Meteorol. Soc. Jpn. Ser. II, 60, 140-148. https://doi.org/10.2151/jmsj1965.60.1_140
  16. Hood, L. L., M. A. Redman, W. L. Johnson, and T. J. Galarneau Jr., 2020: Stratospheric influences on the MJO-Induced Rossby wave train: Effects on intraseasonal climate. J. Climate, 33, 365-389, doi:10.1175/JCLI-D-18-0811.1.
  17. Hsiao, C., 1981: Autoregressive modelling and money-income causality detection. J. Monetary Econ., 7, 85-106. https://doi.org/10.1016/0304-3932(81)90053-2
  18. Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Climate, 30, 8179-8205, doi:10.1175/JCLI-D-16-0836.1.
  19. Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. Ser. II, 93, 5-48, doi:10.2151/jmsj.2015-001.
  20. Kug, J.-S., M.-S. Ahn, M.-K. Sung, S.-W. Yeh, H.-S. Min, and Y.-H. Kim, 2010: Statistical relationship between two types of El Nino events and climate variation over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 46, 467-474, doi:10.1007/s13143-010-0027-y.
  21. Lee, J. H., and P. Y. Julien, 2016: ENSO impacts on temperature over South Korea. Int. J. Climatol., 36, 3651-3663, doi:10.1002/joc.4581.
  22. Lee, J. H., M. J. Kang, and H. Y. Chun, 2019: Differences in the tropical convective activities at the opposite phases of the quasi-biennial oscillation. Asia-Pac. J. Atmos. Sci., 55, 317-336, doi:10.1007/s13143-018-0096-x.
  23. Li, X., M. Sun, D. Han, C. Gao, H. He, and I. A. Mensah, 2018: Dynamic features of China's photovoltaic listed companies in different periods: Based on partial Granger causality network. J. Renew. Sustain. Ener., 10, 045904, doi:10.1063/1.5023131.
  24. Luo, X., and Y. Zhang, 2015: The linkage between upper-level jet streams over East Asia and East Asian winter monsoon variability. J. Climate, 28, 9013-9028, doi:10.1175/JCLI-D-15-0160.1.
  25. Ma, T., W. Chen, J. Huangfu, L. Song, and Q. Cai, 2021: The observed influence of the Quasi-Biennial Oscillation in the lower equatorial stratosphere on the East Asian winter monsoon during early boreal winter. Int. J. Climatol., 41, 6254-6269, doi:10.1002/joc.7192.
  26. Madden, R. A., and P. R. Julian, 1971: Detection of a 40~50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702-708. https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
  27. McGraw M. C., and E. A. Barnes, 2018: Memory matters: A case for Granger causality in climate variability studies. J. Climate, 31, 3289-3300, doi:10.1175/JCLID-17-0334.1.
  28. Park, C.-H., S.-W. Son, and J. Choi, 2018: Granger causality test between ENSO and winter climate variability over the Korean Peninsula. J. Climate Change Res., 9, 171-179, doi:10.15531/KSCCR.2018.9.2.171 (in Korean with English abstract).
  29. Rao, J., C. I. Garfinkel, and I. P. White, 2020: How does the Quasi-Biennial Oscillation affect the boreal winter tropospheric circulation in CMIP5/6 models? J. Climate, 33, 8975-8996, doi:10.1175/JCLI-D-20-0024.1.
  30. Ruti, P. M., V. Lucarini, A. Dell'Aquila, S. Calmanti, and A. Speranza, 2006: Does the subtropical jet catalyze the midlatitude atmospheric regimes? Geophys. Res. Lett., 33, L06814. https://doi.org/10.1029/2005GL024620
  31. Seo, J., W. Choi, D. Youn, D.-S. R. Park, and J. Y. Kim, 2013: Relationship between the stratospheric quasi-biennial oscillation and the spring rainfall in the western North Pacific. Geophys. Res. Lett., 40, 5949-5953, doi: 10.1002/2013GL058266.
  32. Simpson, I. R., M. Blackburn, and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66, 1347-1365. https://doi.org/10.1175/2008JAS2758.1
  33. Son, S.-W., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric Control of the Madden-Julian Oscillation. J. Climate, 30, 1909-1922, doi:10.1175/JCLI-D-16-0620.1.
  34. Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 1421-1428. https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2
  35. Wang, W., B. T. Anderson, R. K. Kaufmann, and R. B. Myneni, 2004: The relation between the North Atlantic Oscillation and SSTs in the North Atlantic basin. J. Climate, 17, 4752-4759. https://doi.org/10.1175/JCLI-3186.1
  36. Youssofzadeh, V., G. Prasad, M. Naeem, and K. Wong-Lin, 2016: Temporal information of directed causal connectivity in multi-trial ERP data using partial Granger causality. Neuroinform., 14, 99-120, doi:10.1007/s12021-015-9281-6.