DOI QR코드

DOI QR Code

Relationships between rhythm and fluency indices and listeners' ratings of Korean speakers' English paragraph reading

리듬 및 유창성 지수와 한국 화자의 영어 읽기 발화 청취 평가의 관련성

  • Hyunsong, Chung (Department of English Education, Korea National University of Education)
  • 정현성 (한국교원대학교 영어교육과)
  • Received : 2022.11.20
  • Accepted : 2022.12.11
  • Published : 2022.12.31

Abstract

This study investigates the relationships between rhythm and fluency indices and listeners' ratings of the rhythm and fluency of Korean college students' English paragraph reading. 17 university students read and recorded a passage from "The North Wind and the Sun" twice before and after three months of English pronunciation instruction. Seven in-service and pre-service English teachers in graduate school assessed the rhythm and fluency of the utterances. In addition, the values of 14 indices of rhythm and fluency were extracted from each speech and the relationships between the indices and the listeners' ratings were analyzed. The rhythm indices of the speakers in this study did not differ significantly from those of native English speakers presented in previous studies in %V, VarcoV, and nPVIV, but were higher in ΔV, ΔC, and VarcoC and lower in speech rate. The level of rhythm and fluency demonstrated by Korean college students was comparable, at least in terms of objective values for certain indices. The fluency indices, such as percentage of pauses, articulation rate, and speech rate, significantly contributed more to predicting both rhythm and fluency ratings than the rhythm indices.

이 논문은 리듬 및 유창성 지수와 한국 대학생이 읽은 영어 발화의 리듬 및 유창성 청취 평가가 어떤 관련성을 가지는지 분석한 연구이다. 이를 위해 대학생 17명이 'The North Wind and the Sun' 문단을 읽고 영어 발음 수업 사전, 사후 두 차례에 걸쳐 녹음한 것을, 대학원에 재학 중인 현직 영어 교사 및 예비 영어 교사 7명이 리듬 및 유창성에 대한 청취 평가를 진행하였다. 또, 선행 연구에서 언급된 리듬 및 유창성 지수 중 14개 지수를 사용해 각 발화 자료의 지수를 추출하여 지수와 청취 평가의 관련성을 분석하였다. 지수를 분석한 결과 %V, VarcoV, nPVIV에서는 선행 연구의 영어 원어민 지수와 거의 비슷한 양상을 보였고, ΔV, ΔC, VarcoC에서는 원어민보다 높았으며, 발화 속도는 원어민보다 느렸다. 한국 대학생들이 일부 리듬 지수에서는 영어 원어민과 비슷한 양상을 보인다고 할 수 있다. 리듬 및 유창성 지수를 사용하여 리듬 평가 점수와 유창성 평가 점수를 예측할 수 있는 최적의 모델을 탐색한 결과, 리듬 및 유창성 평가 모두에서 유창성 지수인 휴지 비율, 조음 속도, 발화 속도 등이 리듬 지수들보다 평가 점수를 예측하는데 더 큰 기여를 하는 것으로 나타났다.

Keywords

Acknowledgement

본 연구에서 사용된 FAVE-align 방식의 강제 정렬 도구는 성신여자대학교 윤태진 교수님의 도움으로 만든 것입니다. 도구를 제공해 주신 윤태진 교수님께 감사드립니다.

References

  1. Bates, D., Machler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48.
  2. Boersma, P., & Weenink, D. (2022). Praat: Doing phonetics by computer (version 6.2.17) [Computer program]. Retrieved from https://www.fon.hum.uva.nl/praat/
  3. Chakrabarti, A., & Ghosh, J. K. (2011). AIC, BIC and recent advances in model selection. In P. S. Bandyopadhyay, & M. R. Forster (Eds.), Philosophy of statistics: Handbook of the philosophy of science (pp. 583-605). Amsterdam, Netherlands: Elsevier.
  4. Choe, W. K. (2019). The realization of English rhythm by Busan Korean speakers. Phonetics and Speech Sciences, 11(4), 81-87. https://doi.org/10.13064/KSSS.2019.11.4.081
  5. Chung, H. (2013). A study on the rhythm of Korean English learners' interlanguage talk. Phonetics and Speech Sciences, 5(3), 3-10. https://doi.org/10.13064/KSSS.2013.5.3.003
  6. Chung, H., Jang, T. Y., Yun, W., Yun, I., & Sa, J. (2008). A study on automatic measurement of pronunciation accuracy of English speech produced by Korean learners of English. Language and Linguistics, 42, 165-196.
  7. Dellwo, V. (2006). Rhythm and speech rate: A variation coefficient for deltaC. In P. Karnowski & I. Szigeti (Eds.), Language and language processing: Proceedings of the 38th Linguistic Colloquium(pp. 231-241). Frankfurt, Germany.
  8. Derwing, T. M., Rossiter, M. J., Munro, M. J., & Thomson, R. I. (2004). Second language fluency: Judgments on different tasks. Language Learning, 54(4), 655-679. https://doi.org/10.1111/j.1467-9922.2004.00282.x
  9. Deterding, D. (2001). The measurement of rhythm: A comparison of Singapore and British English. Journal of Phonetics, 29(2), 217-230. https://doi.org/10.1006/jpho.2001.0138
  10. Grabe, E., & Low, E. L. (2002). Durational variability in speech and the rhythm class hypothesis. In C. Gussenhoven, & N. Warner (Eds.), Laboratory phonology 7 (pp. 515-546). Berlin, Germany: De Gruyter Mouton.
  11. Hothorn, T., Hornik, K., van de Wiel, M. A., & Zeileis, A (2008). Implementing a class of permutation tests: The coin package. Journal of Statistical Software, 28(8), 1-23.
  12. Isaacs, T., & Thomson, R. I. (2013). Rater experience, rating scale length, and judgments of L2 pronunciation: Revisiting research conventions. Language Assessment Quarterly, 10(2), 135-159. https://doi.org/10.1080/15434303.2013.769545
  13. Kim, M. S., & Jang, T. Y. (2019). Pauses and speech rates in assessing fluency of English speech. Korean Journal of Linguistics, 44(3), 315-339. https://doi.org/10.18855/lisoko.2019.44.3.001
  14. Kim, S. (2021). Foreign accentedness rating and rhythm in L2 English. The Mirae Journal of English Language and Literature, 26(4), 101-120. https://doi.org/10.46449/MJELL.2021.11.26.4.101
  15. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26.
  16. Ling, L. E., Grabe, E., & Nolan, F. (2000). Quantitative characterizations of speech rhythm: Syllable-timing in Singapore English. Language and Speech, 43(4), 377-401. https://doi.org/10.1177/00238309000430040301
  17. Mariano, P., & Romano, A. (2011). Rhythm metrics for 21 languages. Proceedings of the 17th International Congress of Phonetic Sciences (pp. 1318-1321). Hong Kong, China.
  18. Pinheiro, J., Bates D., & R Core Team, (2022). nlme: Linear and nonlinear mixed effects models (version 3.1-157) [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://cran.r-project.org/web/packages/nlme/
  19. R Core Team (2022). R: A language and environment for statistical computing (version 4.2.1) [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
  20. Ramus, F., Nespor, M., & Mehler, J. (1999). Correlates of linguistic rhythm in the speech signal. Cognition, 73(3), 265-292. https://doi.org/10.1016/S0010-0277(99)00058-X
  21. Revelle, W. (2022). psych: Procedures for personality and psychological research (version 2.2.9) [Computer software]. Evanston, IL: Northwestern University. Retrieved from https://CRAN.R-project. org/package=psych
  22. The International Phonetic Association. (1999). Handbook of the International Phonetic Association: A guide to the use of the international phonetic alphabet. Cambridge, UK: Cambridge University Press.
  23. Thomson, R. I. (2015). Fluency. In M. Reed, & J. M. Levis (Eds.), The handbook of English pronunciation (pp. 209-226). Chichester, UK: John Wiley & Sons.
  24. White, L., & Mattys, S. L. (2007). Calibrating rhythm: First language and second language studies. Journal of Phonetics, 35(4), 501-522. https://doi.org/10.1016/j.wocn.2007.02.003