Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터육성지원사업의 연구결과로 수행되었음(IITP-2022-2018-0-01833*). 이 논문의 일부는 분당서울대학교병원 연구비 (grant no 13-2022-0008) 지원에 의해 이루어짐.
References
- Abd El-gaber, F. M., Sallam, Y., & El Sayed, H. M. E. (2021). Acoustic characteristics of voice in patients with chronic kidney disease. International Journal of General Medicine, 14, 2465-2473. https://doi.org/10.2147/IJGM.S307684
- disease. International Journal of General Medicine, 14, 2465-2473. Ahn, H. K. (2000). The H1*-H2* measure. Speech Sciences, 7(2), 85-95.
- Benba, A., Jilbab, A., Hammouch, A., & Sandabad, S. (2015, March). Voiceprints analysis using MFCC and SVM for detecting patients with Parkinson's disease. Proceedings of the 2015 International Conference on Electrical and Information Technologies (ICEIT) (pp. 300-304). Marrakech, Morocco.
- Boersma, P. (2001). Praat, a system for doing phonetics by computer. Glot International, 5(9), 341-345.
- Darouiche, M. S., El Moubtahij, H., Yakhlef, M. B., & Tazi, E. B. (2022, March). An automatic voice disorder detection system based on extreme gradient boosting classifier. Proceedings of the 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1-5). Meknes, Morocco.
- Eyben, F., Scherer, K. R., Schuller, B. W., Sundberg, J., Andre, E., Busso, C., Devillers, L. Y., ... Truong, K. P. (2015). The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing. IEEE Transactions on Affective Computing, 7(2), 190-202.
- Eyben, F., Wollmer, M., & Schuller, B. (2010, October). Opensmile: The munich versatile and fast open-source audio feature extractor. MM '10: Proceedings of the 18th ACM International Conference on Multimedia (pp. 1459-1462). Firenze, Italy.
- Harar, P., Galaz, Z., Alonso-Hernandez, J. B., Mekyska, J., Burget, R., & Smekal, Z. (2020). Towards robust voice pathology detection. Neural Computing and Applications, 32(20), 15747-15757. https://doi.org/10.1007/s00521-018-3464-7
- Hassan, E. S. (2014). Effect of chronic renal failure on voice: An acoustic and aerodynamic analysis. The Egyptian Journal of Otolaryngology, 30(1), 53-57. https://doi.org/10.4103/1012-5574.127207
- Hegde, S., Shetty, S., Rai, S., & Dodderi, T. (2019). A survey on machine learning approaches for automatic detection of voice disorders. Journal of Voice, 33(6), 947.E11-947.E33.
- Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen, A., Channing Moore, R., Plakal, M., ... Wilson, K. (2017, March). CNN architectures for large-scale audio classification. Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 131-135). New Orleans, LA.
- Jung, S. Y., Ryu, J. H., Park, H. S., Chung, S. M., Ryu, D. R., & Kim, H. S. (2014). Voice change in end-stage renal disease patients after hemodialysis: Correlation of subjective hoarseness and objective acoustic parameters. Journal of Voice, 28(2), 226-230. https://doi.org/10.1016/j.jvoice.2013.07.009
- Kumar, R. B., & Bhat, J. S. (2010). Voice in chronic renal failure. Journal of Voice, 24(6), 690-693. https://doi.org/10.1016/j.jvoice.2009.03.001
- Lee, S. J., Cho, Y., Song, J. Y., Lee, D., Kim, Y., & Kim, H. (2015). Aging effect on Korean female voice: Acoustic and perceptual examinations of breathiness. Folia Phoniatrica et Logopaedica, 67(6), 300-307. https://doi.org/10.1159/000445290
- Liu, Y., Lee, T., Law, T., Lee, K., & Ching, P. C. (2018, November). Prediction of voice disorder severity: Contributions from sustained vowels and continuous speech. Proceedings of the 2018 11th International Symposium on Chinese Spoken Language Processing (ISCSLP) (pp. 290-294). Taipei, Taiwan.
- McFee, B., Raffel, C., Liang, L., Ellis, D. P. W., McVicar, M., Battenberg, E., & Nieto, O. (2015, July). Librosa: Audio and music signal analysis in Python. Proceedings of the 14th Python in Science Conference (pp. 18-25). Austin, TX.
- Moon, K. R., Chung, S. M., Park, H. S., & Kim, H. S. (2012). Materials of acoustic analysis: Sustained vowel versus sentence. Journal of Voice, 26(5), 563-565. https://doi.org/10.1016/j.jvoice.2011.09.007
- Mudawwar, W. A., Alam, E. S., Sarieddine, D. S., Turfe, Z. A., & Hamdan, A. H. (2017). Effect of renal failure on voice. ENT: Ear, Nose &and Throat Journal, 96, 32-36.
- Mun, J., Kim, S., Kim, M. J., Ryu, J., Kim, S., & Chung, M. (2022). A speech corpus for chronic kidney disease. arXiv. https://doi.org/10.48550/arXiv.2211.01705
- Narendra, N. P., & Alku, P. (2020). Glottal source information for pathological voice detection. IEEE Access, 8, 67745-67755. https://doi.org/10.1109/access.2020.2986171
- Omeroglu, A. N., Mohammed, H. M. A., & Oral, E. A. (2022). Multi-modal voice pathology detection architecture based on deep and handcrafted feature fusion. Engineering Science and Technology, an International Journal, 36, 101148.
- Shetty, S., Hegde, S., & Dodderi, T. (2018, February). Classification of healthy and pathological voices using MFCC and ANN. Proceedings of the 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC) (pp. 1-5). Bangalore, India.
- Speyer, R., Bogaardt, H. C. A., Passos, V. L., Roodenburg, N. P. H. D., Zumach, A., Heijnen, M. A. M., Baijens, L. W. J., ... Brunings, J. W. (2010). Maximum phonation time: Variability and reliability. Journal of Voice, 24(3), 281-284. https://doi.org/10.1016/j.jvoice.2008.10.004
- Sun, Y., Wong, A. K. C., & Kamel, M. S. (2009). Classification of imbalanced data: A review. International Journal of Pattern Recognition and Artificial Intelligence, 23(4), 687-719.
- Teixeira, J. P., Oliveira, C., & Lopes, C. (2013). Vocal acoustic analysis-jitter, shimmer and hnr parameters. Procedia Technology, 9, 1112-1122. https://doi.org/10.1016/j.protcy.2013.12.124
- Triantafyllopoulos, A., Fendler, M., Batliner, A., Gerczuk, M., Amiriparian, S., Berghaus, T. M., & Schuller, B. W. (2022, September). Distinguishing between pre- and post-treatment in the speech of patients with chronic obstructive pulmonary disease. Proceedings of the Interspeech 2022 (pp. 3623-3627), Incheon, Korea.
- Webster, A. C., Nagler, E. V., Morton, R. L., & Masson, P. (2017). Chronic kidney disease. The Lancet, 389(10075), 1238-1252. https://doi.org/10.1016/S0140-6736(16)32064-5
- Yeo, E., Kim, S., & Chung, M. (2021). Automatic severity classification of dysarthria using voice quality, prosody, and pronunciation features. Phonetics and Speech Sciences, 13(2), 57-66. https://doi.org/10.13064/KSSS.2021.13.2.057
- Zaky, E. A., Mamdouh, H., Esmat, O., & Khalaf, Z. (2020). Voice problem in a patient with chronic renal failure. The Egyptian Journal of Otolaryngology, 36(1), 1-8. https://doi.org/10.1186/s43163-020-00001-9