DOI QR코드

DOI QR Code

Dynamic analyses for an axially-loaded pile in a transverse-isotropic, fluid-filled, poro-visco-elastic soil underlain by rigid base

  • Zhang, Shiping (Key Laboratory of Road Structure and Material of Ministry of Transport (Changsha)) ;
  • Zhang, Junhui (Key Laboratory of Road Structure and Material of Ministry of Transport (Changsha)) ;
  • Zeng, Ling (School of Civil Engineering, Changsha University of Science & Technology) ;
  • Yu, Cheng (Dalian Bohai detection Co., Ltd) ;
  • Zheng, Yun (Institute of Rock and Soil Mechanics, Chinese Academy of Sciences)
  • 투고 : 2019.10.16
  • 심사 : 2022.02.15
  • 발행 : 2022.04.10

초록

Simplified analytical solutions are developed for the dynamic analyses of an axially loaded pile foundation embedded in a transverse-isotropic, fluid-filled, poro-visco-elastic soil with rigid substratum. The pile is modeled as a viscoelastic Rayleigh-Love rod, while the surrounding soil is regarded as a transversely isotropic, liquid-saturated, viscoelastic, porous medium of which the mechanical behavior is represented by the Boer's poroelastic media model and the fractional derivative model. Upon the separation of variables, the frequency-domain responses for the impedance function of the pile top, and the vertical displacement and the axial force along the pile shaft are gained. Then by virtue of the convolution theorem and the inverse Fourier transform, the time-domain velocity response of the pile head is derived. The presented solutions are validated, compared to the existing solution, the finite element model (FEM) results, and the field test data. Parametric analyses are made to show the effect of the soil anisotropy and the excitation frequency on the pile-soil dynamic responses.

키워드

과제정보

This work is supported by the National Natural Science Foundation of China [Grant number 51908070, 51978085, 51927814, and 52025085], the Natural Science Foundation of Hunan Province (2020JJ5596), the Excellent Youth Foundation of Natural Science Foundation of Hunan Province (2018JJ1026), the Key Project of Education Department of Hunan Province (17A008), the Training Program for High-level Technical Personnel in Transportation Industry (2018-025), the Open Funds of the National Engineering Laboratory of Highway Maintenance Technology through Grant kfj190103, and the Key Laboratory of Road Structure and Material of the Ministry of Transport through Grant kfj170304 (Changsha University of Science & Technology).

참고문헌

  1. Ai, Z.Y. and Li, Z.X. (2015), "Dynamic analysis of a laterally loaded pile in a transversely isotropic multilayered half-space", Eng. Anal. Bound. Elem., 54, 68-75. https://doi.org/10.1016/j.enganabound.2015.01.008.
  2. Ai, Z.Y. and Liu, C.L. (2015), "Vertical vibration of a pile in transversely isotropic multilayered soils", J. Sound Vib., 357, 145-155. https://doi.org/10.1016/j.jsv.2015.07.032.
  3. Ai, Z.Y., Li, Z.X. and Wang, L.H. (2016), "Dynamic response of a laterally loaded fixed-head pile group in a transversely isotropic multilayered half-space", J. Sound Vib., 385, 171-183. https://doi.org/10.1016/j.jsv.2016.09.016.
  4. Ai, Z.Y., Liu, C.L. and Wang, L.J. (2016), "Vertical vibration of a partially embedded pile group in transversely isotropic soils", Comput. Geotech., 80, 107-114. https://doi.org/10.1016/j.compgeo.2016.06.017.
  5. Bagley, R.L. and Torvik, P.J. (1983), "A theoretical basis for the application of fractional calculus to viscoelasticity", J. Rheol., 27(3), 201-210. https://doi.org/10.1122/1.549724.
  6. Barari, A., Bayat, M. and Saadati, M. (2015), "Transient analysis of monopile foundations partially embedded in liquefied soil", Geomech. Eng., 8(2), 257-282. https://doi.org/10.12989/gae.2015.8.2.257.
  7. Barros, P.L.A., Labaki, J. and Mesquita, E. (2019), "IBEM-FEM model of a piled plate within a transversely isotropic half-space", Eng. Anal. Bound. Elem., 101, 281-296. https://doi.org/10.1016/j.enganabound.2018.12.013.
  8. Boer, D.R. and Liu, Z.F. (1994), "Plane waves in a semi-infinite fluid saturated porous medium", Transport Porous Med., 16, 147-173. https://doi.org/10.1007/BF00617549.
  9. Cai, Y.Q. and Hu, X.Q. (2010), "Vertical Vibrations of a rigid foundation embedded in a poroelastic half-space", J. Eng. Mech., 136, 390-398. https://doi.org/10.1061/(ASCE)0733-9399(2010)136:3(390).
  10. Cai, Y.Q., Hu, X.Q. and Xu, C.J. (2009), "Vertical dynamic response of a rigid foundation embedded in a poroelastic soil layer", Int. J. Numer. Anal. Met. Geomech., 33, 1363-1388. https://doi.org/10.1002/nag.766.
  11. Chen, G., Cai, Y.Q. and Liu, F.Y. (2008), "Dynamic response of a pile in a transversely isotropic saturated soil to transient torsional loading", Comput. Geotech., 35, 165-172. https://doi.org/10.1016/j.compgeo.2007.05.009.
  12. Cui, C.Y., Zhang, S.P. and Chapman, D. (2018), "Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads", Geomech. Eng., 15(2), 793-803. https://doi.org/10.12989/gae.2018.15.2.793.
  13. Gharahi, A., Rahimian, M. and Eskandari-Ghadi, M. (2014), "Dynamic interaction of a pile with a transversely isotropic elastic half-space under transverse excitations", Int. J. Solids Struct., 51, 4082-4093. https://doi.org/10.1016/j.ijsolstr.2014.08.001.
  14. Liu, H.L., Zheng, C.J. and Ding, X.M. (2014), "Vertical dynamic response of a pipe pile in saturated soil layer", Comput. Geotech., 61, 57-66. https://doi.org/10.1016/j.compgeo.2014.04.006.
  15. Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY, USA.
  16. Nogami, T. and Novak, M. (1976), "Soil-pile interaction in vertical vibration", Earthq. Eng. Struct. D., 4(3), 277-293. https://doi.org/10.1002/eqe.4290040308.
  17. Novak, M. (1977), "Vertical vibration of floating piles", J. Eng. Mech., 103(1), 153-168.
  18. Shahbodagh, B., Ashari, M. and Khalili, N. (2017), "A hybrid element method for dynamics of piles and pile groups in transversely isotropic media", Comput. Geotech., 85, 249-261. https://doi.org/10.1016/j.compgeo.2016.12.029.
  19. Shahmohamadi, M., Khojasteh, A. and Rahimian, M. (2011a), "Axial soil-pile interaction in a transversely isotropic halfspace", Int. J. Eng. Sci., 49, 934-949. https://doi.org/10.1016/j.ijengsci.2011.05.004.
  20. Shahmohamadi, M., Khojasteh, A. and Rahimian, M. (2011b), "Seismic response of an embedded pile in a transversely isotropic half-space under incident P-wave excitations", Soil Dyn. Earthq. Eng., 31, 361-371. https://doi.org/10.1016/j.soildyn.2010.09.005.
  21. Shahmohamadi, M., Khojasteh, A. and Rahimian, M. (2013), "Dynamics of a cylindrical pile in a transversely isotropic half-space under axial excitations", J. Eng. Mech., 139(5), 568-579. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000511.
  22. Tajimi, H. (1969), "Dynamic analysis of a structure embedded in an elastic stratum", Proceedings of 4th World Conference on Earthquake Engineering, Santiago, Chile, January.
  23. Wang, C.D. (2004), "Three-dimensional nonlinearly varying rectangular loads on a transversely isotropic half-space", Int. J. Geomech., 4(4), 240-253. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:4(240).
  24. Wang, C.D. and Liao, J.J. (2001), "Elastic solutions for a transversely isotropic half-space subjected to arbitrarily shaped loads using triangulating technique", Int. J. Geomech., 1(2), 193-224. https://doi.org/10.1061/(ASCE)1532-3641(2001)1:2(193).
  25. Wang, K.H., Zhang, Z.Q. and Leo, C.J. (2009), "Dynamic torsional response of an end bearing pile in transversely isotropic saturated soil", J. Sound Vib., 327, 440-453. https://doi.org/10.1016/j.jsv.2009.06.017.
  26. Zhang, S.P., Cui, C.Y. and Yang, G. (2019), "Vertical dynamic impedance of pile groups partially embedded in multilayered, transversely isotropic, saturated soils", Soil Dyn. Earthq. Eng., 117, 106-115. https://doi.org/10.1016/j.soildyn.2018.11.003.
  27. Zhang, S.P., Pak, Y.S.R. and Zhang, J.H. (2021), "Vertical time-harmonic coupling vibration of an impermeable, rigid, circular plate resting on a finite, poroelastic soil layer", Acta Geotech., 16, 911-935. https://doi.org/10.1007/s11440-020-01067-8.
  28. Zhang, S.P., Pak, Y.S.R. and Zhang, J.H. (2022), "Three-dimensional frequency-domain Green's functions of a finite fluid-saturated soil layer underlain by rigid bedrock to interior loadings", Int. J. Geomech., 22(1), 04021267. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002235.
  29. Zhang, S.P., Xu, Z. and Deng, C. (2022), "Vertical frequency-domain compliance of an elastic pipe pile embedded in a liquidfilled and porous-viscoelastic soil", Int. J. Numer. Anal. Met. Geomech., 1-25, https://doi.org/10.1002/nag.3347.
  30. Zhang, S.P., Zhang, J.H., Ma, Y.B. and Pak Y.S.R. (2021), "Vertical dynamic interactions of poroelastic soils and embedded piles considering the effects of pile-soil radial deformations". Soils Found., 61, 16-34. https://doi.org/10.1016/j.sandf.2020.10.003.
  31. Zheng, C.J., Hua, J.M. and Ding, X.M. (2016), "Torsional vibration of a pipe pile in transversely isotropic saturated soil", Earthq. Eng. Eng. Vib., 15, 509-517. https://doi.org/10.1007/s11803-016-0340-2.