DOI QR코드

DOI QR Code

Photodegradation Characteristics of Oxygen Vacancy-fluorinated WO3 Photocatalysts Controlled by Plasma and Direct Vapor Fluorination

플라즈마 및 직접 기상 불소화에 의해 제어된 산소결핍 불소화 WO3 광촉매의 광분해 특성

  • Lee, Hyeryeon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Raneun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Daesup (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 이혜련 (충남대학교 응용화학공학과) ;
  • 이란은 (충남대학교 응용화학공학과) ;
  • 김대섭 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2021.12.28
  • Accepted : 2022.01.17
  • Published : 2022.04.10

Abstract

To enhance the photocatalytic activities of WO3 photocatalysts, fluorine doping was performed to induce the oxygen vacancies. Both plasma and direct vaper fluorination were carried out for fluorine doping, and photocatalytic activities were examined by using methylene blue dye. Oxygen vacancies of the plasma and direct vaper fluorinated WO3 photocatalysts were measured to be 14.65 and 18.59%, which increased to about 23 and 56% at pristine WO3 photocatalysts. The degradation efficiency of methylene blue was also determined about 1.7 and 3.4 times higher than pristine WO3 photocatalysts, respectively, depending on oxygen vacancies increased. In addition, it was confirmed that the bandgap process energy decreased from 2.95 eV to 2.64 and 2.45 eV after fluorine doping. From this result, it is considered that the direct vaper fluorination has an advantage for increasing the photocatalytic activities of WO3 compared to that of the plasma fluorination.

WO3 광촉매의 광분해 성능을 증대시키기 위하여 산소결핍자리 생성을 유도하기 위한 불소 도핑을 수행하였다. 불소 도핑을 위하여 플라즈마 불소화와 직접 기상 불소화를 진행하였으며, 두 가지 방법으로 불소화한 WO3 광촉매의 광분해 성능을 비교하기 위하여 메틸렌블루 염료 분해 성능을 평가하였다. 플라즈마 불소화한 WO3 광촉매와 직접 기상 불소화한 WO3 광촉매의 산소결핍자리는 각 14.65 및 18.59%로 미처리 WO3 광촉매 대비 각 23, 56% 증가하였으며, WO3 광촉매의 산소결핍자리가 증가함에 따라 메틸렌블루 염료분해 성능 역시 미처리 WO3 광촉매 대비 각 1.7, 3.4배 증가한 것을 확인하였다. 또한 불소 도핑 후 밴드갭 에너지는 각 2.95 eV에서 2.64, 2.45 eV로 감소한 것을 확인하였다. 이러한 결과로 미루어 보아 직접 기상 불소화 공정이 플라즈마 불소화 공정과 비교하여 WO3 광촉매의 활성을 증대시키는데 유리한 공정인 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 한국산업기술평가관리원의 핵심소재원천기술개발사업(산업폐수 처리용 석유계 잔사유 기반 다공성 흡착소재 개발: K_G012001276302)의 지원에 의하여 수행하였으며 이에 감사드립니다.

References

  1. J. Lee, S. Seong, S. Jin, Y. Jeong, and J. Noh, Synergetic photocatalytic-activity enhancement of lanthanum doped TiO2 on halloysite nanocomposites for degradation of organic dye, J. Ind. Eng. Chem., 100, 126-133 (2021). https://doi.org/10.1016/j.jiec.2021.05.029
  2. S.-K. Chun, Construction method of zero discharge system for environmental energy complex in landfill, J. Korean Soc. Water Wastewater, 27, 581-590 (2013). https://doi.org/10.11001/jksww.2013.27.5.581
  3. M. R. Bilad, N. I. M. Nawi, D. D. Subramaniam, N. Shamsuddin, A. L. Khan, J. Jaafar, and A. B. D. Nandiyanto, Low-pressure submerged membrane filtration for potential reuse of detergent and water from laundry wastewater, J. Water Process Eng., 36, 101264 (2020). https://doi.org/10.1016/j.jwpe.2020.101264
  4. A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, and M. Maqbool, Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution, J. Ind. Eng. Chem., 97, 111-128 (2021). https://doi.org/10.1016/j.jiec.2021.02.017
  5. V. T. Quyen, J. Kim, P.-M. Park, P. T. Huong, N. M. Viet, and P. Q. Thang, Enhanced the visible light photocatalytic decomposition of antibiotic pollutant in wastewater by using Cu doped WO3, J. Environ. Chem. Eng., 9, 104737 (2021). https://doi.org/10.1016/j.jece.2020.104737
  6. A. A. P. Khan, P. Singh, P. Raizada, and A. M. Asiri, Converting Ag3PO4/CdS/Fe doped C3N4 based dual Z-scheme photocatalyst into photo-Fenton system for efficient photocatalytic phenol removal, J. Ind. Eng. Chem,. 98, 148-160 (2021). https://doi.org/10.1016/j.jiec.2021.04.007
  7. A. M. Elgorban, A. A. Al Kheraif, and A. Syed, Construction of Ag2WO4 decorated CoWO4 nano-heterojunction with recombination delay for enhanced visible light photocatalytic performance and its antibacterial applications, COLLOID SURF. A-PHYSICOCHEM. ENG. ASP, 629, 127416 (2021). https://doi.org/10.1016/j.colsurfa.2021.127416
  8. K.-M. Kang, J.-H. Jeong, G.-I. Lee, J.-M. Im, H.-J. Cheon, D.-H. Kim, and Y.-C. Nah, Photocatalytic properties of WO3 thin films prepared by electrodeposition method, J. Korean Powder Metall. Inst., 26, 40-44 (2019). https://doi.org/10.4150/KPMI.2019.26.1.40
  9. J. Zhang, K. Zhu, Y. Zhu, C. Qin, L. Liu, D. Liu, Y. Wang, W. Gan, X. Fu, and H. Hao, Enhanced photocatalytic degradation of tetracycline hydrochloride by Al-doped BiOCl microspheres under simulated sunlight irradiation, Chem. Phys. Lett., 750, 137483 (2020). https://doi.org/10.1016/j.cplett.2020.137483
  10. P. Manojkumar, E. Lokeshkumar, A. Saikiran, B. Govardhanan, M. Ashok, and N. Rameshbabu, Visible light photocatalytic activity of metal (Mo/V/W) doped porous TiO2 coating fabricated on Cp-Ti by plasma electrolytic oxidation, J. Alloys Compd., 825, 154092 (2020). https://doi.org/10.1016/j.jallcom.2020.154092
  11. S. Mohammadi, M. Sohrabi, A. N. Golikand, and A. Fakhri, Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology, J Photochem. Photobiol. B, 161, 217-221 (2016). https://doi.org/10.1016/j.jphotobiol.2016.05.020
  12. N. L. M. Tri, J. Kim, B. L. Giang, T. Al Tahtamouni, P. T. Huong, C. Lee, and N. M. Viet, Ag-doped graphitic carbon nitride photocatalyst with remarkably enhanced photocatalytic activity towards antibiotic in hospital wastewater under solar light, J. Ind. Eng. Chem., 80, 597-605 (2019). https://doi.org/10.1016/j.jiec.2019.08.037
  13. Y. Zheng, G. Chen, Y. Yu, Y. Zhou, and F. He, Synthesis of carbon doped WO3.0.33H2O hierarchical photocatalyst with improved photocatalytic activity, Appl. Surf. Sci., 362, 182-190 (2016). https://doi.org/10.1016/j.apsusc.2015.11.115
  14. H. Lee, H. S. Jang, N. Y. Kim, and J. B. Joo, Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions, J. Ind. Eng. Chem., 99, 352-363 (2021). https://doi.org/10.1016/j.jiec.2021.04.045
  15. G. Jin, and S. Liu, Preparation and photocatalytic activity of fluorine doped WO3 under UV and visible light, Dig. J. Nanomater. Biostruct., 4, 1179-1188 (2016).
  16. S. Singh, V. C. Srivastava, and S. L. Lo, Surface modification or doping of WO3 for enhancing the photocatalytic degradation of organic pollutant containing wastewaters: A review, Mater. Sci. Forum, 855, 105-126 (2016). https://doi.org/10.4028/www.scientific.net/msf.855.105
  17. M. Liao, L. Su, Y. Deng, S. Xiong, R. Tang, Z. Wu, C. Ding, L. Yang, and D. Gong, Strategies to improve WO3-based photocatalysts for wastewater treatment: a review, J. Mater. Sci., 56, 14416-14447 (2021). https://doi.org/10.1007/s10853-021-06202-8
  18. E. M. Samsudin and S. B. Abd Hamid, Effect of band gap engineering in anionic-doped TiO2 photocatalyst, Appl. Surf. Sci., 391, 326-336 (2017). https://doi.org/10.1016/j.apsusc.2016.07.007
  19. X. Wang, X. Wang, Q. Di, H. Zhao, B. Liang, and J. Yang, Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescence characteristics of f doped SnO2 nanoparticles, Materials, 10, 1398 (2017). https://doi.org/10.3390/ma10121398
  20. J. Yin, Z. Xing, J. Kuang, Z. Li, Q. Zhu, and W. Zhou, Dual oxygen vacancy defects-mediated efficient electron-hole separation via surface engineering of Ag/Bi2MoO6 nanosheets/TiO2 nanobelts ternary heterostructures, J. Ind. Eng. Chem., 78, 155-163 (2019). https://doi.org/10.1016/j.jiec.2019.06.021
  21. C. Gao, J. Zhou, G. Liu, and L. Wang, Synthesis of F-doped LiFePO4/C cathode materials for high performance lithium-ion batteries using co-precipitation method with hydrofluoric acid source, J. Alloys Compd., 727, 501-513 (2017). https://doi.org/10.1016/j.jallcom.2017.08.149
  22. Y. Tian, X. Zhang, Y. Wang, and Z. Cui, SF6 abatement in a packed bed plasma reactor: Role of zirconia size and optimization using RSM, J. Ind. Eng. Chem., 94, 205-216 (2021). https://doi.org/10.1016/j.jiec.2020.10.035
  23. R. Lee, C. Lim, M.-J. Kim, and Y.-S. Lee, Acetic acid gas adsorption characteristics of activated carbon fiber by plasma and direct gas fluorination, Appl. Chem. Eng., 32, 55-60 (2021). https://doi.org/10.14478/ACE.2020.1098
  24. M.-J. Kim, M.-J. Jung, M. I. Kim, S. S. Choi, and Y.-S. Lee, Adsorption characteristics of toluene gas using fluorinated phenol-based activated carbons, Appl. Chem. Eng., 26, 587-592 (2015). https://doi.org/10.14478/ACE.2015.1083
  25. M.-J. Kim, M.-J. Jung, S. S. Choi, and Y.-S. Lee, Adsorption characteristics of chromium ion at low concentration using oxy-fluorinated activated carbon fibers, Appl. Chem. Eng., 26, 432-438 (2015). https://doi.org/10.14478/ACE.2015.1050
  26. E. Jeong, M.-J. Jung, S. G. Lee, H. G. Kim, and Y.-S. Lee, Role of surface fluorine in improving the electrochemical properties of Fe/MWCNT electrodes, J. Ind. Eng. Chem., 43, 78-85 (2016). https://doi.org/10.1016/j.jiec.2016.07.050
  27. K. M. Lee, S.-E. Lee, and Y.-S. Lee, Effect of fluorination on thermal and mechanical properties of carbon nanotube and graphene nanoplatelet reinforced epoxy composites, Polym. Korea, 40, 553-560 (2016). https://doi.org/10.7317/pk.2016.40.4.553
  28. H. Lee, C. Lim, R. Lee, and Y.-S. Lee, Synthesis and photocatalytic activity of WO3-xFx photocatalysts using a vapor phase fluorination, Appl. Chem. Eng., 32, 632-639 (2021).
  29. C. Song, C. Li, Y. Yin, J. Xiao, X. Zhang, M. Song, and W. Dong, Preparation and gas sensing properties of partially broken WO3 nanotubes, Vacuum, 114, 13-16 (2015). https://doi.org/10.1016/j.vacuum.2014.12.019
  30. T. K. Le, D. Flahaut, D. Foix, S. Blanc, H. K. H. Nguyen, T. K. X. Huynh, and H. Martinez, Study of surface fluorination of photocatalytic TiO2 by thermal shock method, J. Solid State Chem., 187, 300-308 (2012). https://doi.org/10.1016/j.jssc.2012.01.034
  31. B. Gerand, G. Nowogrocki, J. Guenot, and M. Figlarz, Structural study of a new hexagonal form of tungsten trioxide, J. Solid State Chem., 29, 429-434 (1979). https://doi.org/10.1016/0022-4596(79)90199-3
  32. M. A. Lange, Y. Krysiak, J. Hartmann, G. Dewald, G. Cerretti, M. N. Tahir, M. Panthofer, B. Barton, T. Reich, and W. G. Zeier, Solid state fluorination on the minute scale: synthesis of WO3-xFx with photocatalytic activity, Adv. Funct. Mater., 30, 1909051 (2020). https://doi.org/10.1002/adfm.201909051
  33. S. Ge, K. W. Wong, S. K. Tam, C. H. Mak, and K. M. Ng, Facile synthesis of WO3-x nanorods with controlled dimensions and tunable near-infrared absorption, J. Nanopart. Res., 20, (2018).
  34. T. Kim, G. Baek, S. Yang, J. Y. Yang, K. S. Yoon, S. G. Kim, J. Y. Lee, H. S. Im, and J. P. Hong, Exploring oxygen-affinity-controlled TaN electrodes for thermally advanced TaOx bipolar resistive switching, Sci. Rep., 8, 8532 (2018). https://doi.org/10.1038/s41598-018-26997-y
  35. X. Zhang, Y. Han, W. Liu, N. Pan, D. Li, and J. Chai, A novel synthesis of hexagonal cylinder-like ZnO with an excellent performance by a surfactant-free microemulsion-hydrothermal method, J. Ind. Eng. Chem., 97, 326-336 (2021). https://doi.org/10.1016/j.jiec.2021.02.019
  36. K. H. Kim, J. H. Cho, J. U. Hwang, J. S. Im, and Y.-S. Lee, A key strategy to form a LiF-based SEI layer for a lithium-ion battery anode with enhanced cycling stability by introducing a semi-ionic CF bond, J. Ind. Eng. Chem., 99, 48-54 (2021). https://doi.org/10.1016/j.jiec.2021.04.002
  37. B.-G. Park and K.-H. Chung, Visible Light Photocatalytic Properties of Bismuth Ferrite Prepared By Sol-Gel Method, Korean Chem. Eng. Res., 58, 486-492 (2020).
  38. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, and Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS Appl. Mater. Interfaces, 4, 4024-4030 (2012). https://doi.org/10.1021/am300835p
  39. E. M. Samsudin and S. B. Abd Hamid, Effect of band gap engineering in anionic-doped TiO2 photocatalyst, Appl. Surf. Sci., 391, 326-336 (2017). https://doi.org/10.1016/j.apsusc.2016.07.007
  40. Y. Kang, X. Wu, and Q. Gao, Plasmonic-enhanced near-infrared photocatalytic activity of F-doped (NH4)0.33WO3 nanorods, ACS Sustain. Chem. Eng., 7, 4210-4219 (2019). https://doi.org/10.1021/acssuschemeng.8b05880
  41. H. Lee, O. Gwon, K. Choi, L. Zhang, J. Zhou, J. Park, J.-W. Yoo, J.-Q. Wang, J. H. Lee, and G. Kim, Enhancing bifunctional electrocatalytic activities via metal d-band center lift induced by oxygen vacancy on the subsurface of perovskites, ACS Catal., 10, 4664-4670 (2020). https://doi.org/10.1021/acscatal.0c01104
  42. L. Gan, L. Xu, S. Shang, X. Zhou, and L. Meng, Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism, Ceram. Int., 42, 15235-15241 (2016). https://doi.org/10.1016/j.ceramint.2016.06.160
  43. Y. Lu, J. Zhang, F. Wang, X. Chen, Z. Feng, and C. Li, K2SO4-assisted hexagonal/monoclinic WO3 phase junction for efficient photocatalytic degradation of RhB, ACS Appl. Energy Mater., 1, 2067-2077 (2018). https://doi.org/10.1021/acsaem.8b00168