DOI QR코드

DOI QR Code

Adsorption and Regeneration Characteristics of Ammonia on NiCl2 Impregnated Adsorbents

NiCl2 첨착된 흡착제 상에서 암모니아의 흡착 및 재생 특성

  • Lim, Jeong-Hyeon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Song, Kang (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Park, Chu-Sik (Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 임정현 (충남대학교 응용화학공학과) ;
  • 송강 (충남대학교 응용화학공학과) ;
  • 박주식 (한국에너지기술연구원) ;
  • 김영호 (충남대학교 응용화학공학과)
  • Received : 2022.03.03
  • Accepted : 2022.03.25
  • Published : 2022.04.10

Abstract

Effects of the support and amount of NiCl2 on ammonia adsorption capacity were investigated to improve the ammonia adsorption performance. NiCl2 was impregnated onto the surface of various supports under ultrasonic irradiation. The physicochemical properties and ammonia adsorption performance of NiCl2-impregnated adsorbents were investigated. Among the various supports, it was found that the adsorption capacity of ammonia was the best when NiCl2 was impregnated on activated carbon (AC) with the highest specific surface area. As a result of changing the amount of NiCl2 impregnated on AC, the NiCl2(2.0)/AC adsorbent impregnated with 2 mmol·g-1 of NiCl2 showed the highest ammonia adsorption capacity of 5.977 mmol·g-1. In addition, the adsorption capacity was found to be maintained at an almost constant level in five repeated cycle tests under the condition that low-temperature heat could be utilized. This indicates that the adsorbent has excellent regeneration ability.

암모니아에 대한 흡착 성능 향상을 목적으로 NiCl2 첨착에 적합한 지지체 및 NiCl2의 첨착량이 암모니아 흡착능에 미치는 영향을 연구하였다. NiCl2는 초음파 조사 하에서 여러 지지체의 표면 위로 첨착하였으며, NiCl2가 첨착된 흡착제의 물리화학적 특성 및 암모니아 흡착 성능을 관찰하였다. 다양한 지지체들 중, 가장 넓은 비표면적을 갖는 활성탄위로 NiCl2를 첨착했을 때, 암모니아의 흡착능이 가장 우수한 것으로 나타났다. 활성탄 위로 NiCl2의 첨착량을 변화시킨 결과, 2 mmol·g-1을 첨착한 NiCl2(2.0)/AC 흡착제가 5.977 mmol·g-1의 가장 우수한 암모니아 흡착 용량을 나타냈다. 또한 저온 열을 이용할 수 있는 조건하 5회의 반복 순환 시험에서 흡착 용량이 거의 일정한 수준으로 유지됨을 나타내어 흡착제의 재생 능력이 우수함을 알 수 있었다.

Keywords

Acknowledgement

This research was supported by Chungnam National University (2021-2022).

References

  1. I. P. Jain, Hydrogen the fuel for 21st century, Int. J. Hydrog. Energy, 34, 7368-7378 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.093
  2. H. K. Park and J. S. Park, Simulation study of hydrogen liquefaction process using helium refrigeration cycle, Appl. Chem. Eng., 31, 153-163 (2020).
  3. H. T. Hwang and A. Varma, Hydrogen storage for fuel cell vehicles, Curr. Opin. Chem. Eng., 5, 42-48 (2014). https://doi.org/10.1016/j.coche.2014.04.004
  4. H. Muroyama, C. Saburi, T. Matsui, and K. Eguchi, Ammonia decomposition over Ni/La2O3 catalyst for on-site generation of hydrogen, Appl. Catal. A: Gen., 443-444, 119-124 (2012). https://doi.org/10.1016/j.apcata.2012.07.031
  5. J. Andersson and S. Gronkvist, Large-scale storage of hydrogen, Int. J. Hydrog. Energy, 44, 11901-11919 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.063
  6. S. Chatterjee, R. K. Parsapur, and K. W. Huang, Limitations of ammonia as a hydrogen energy carrier for the transportation sector, ACS Energy Lett., 6, 4390-4394 (2021). https://doi.org/10.1021/acsenergylett.1c02189
  7. C. Smith and L. T. Murciano, Exceeding single-pass equilibrium with integrated absorption separation for ammonia synthesis using renewable energy-redefining the Haber-Bosch loop, Adv. Energy Mater., 11, 2003845 (2021). https://doi.org/10.1002/aenm.202003845
  8. M. Aziz, A. T. Wijayanta, and A. B. D. Nandiyanto, Ammonia as effective hydrogen storage: A review on production, storage and utilization, Energies, 13, 3062 (2020). https://doi.org/10.3390/en13123062
  9. L. Lin, Y. Tian, W. Su, Y. Luo, C. Chen, and L. Jiang, Technoeconomic analysis and comprehensive optimization of an on-site hydrogen refueling station system using ammonia: Hybrid hydrogen purification with both high H2 purity and high recovery, Sustain. Energy Fuels, 4, 3006-3017 (2020). https://doi.org/10.1039/C9SE01111K
  10. M. J. Kale, D. K. Ojha, S. Biswas, J. I. Militti, A. V. McCormick, J. H. Schott, P. J. Dauenhauer, and E. L. Cussler, Optimizing ammonia separation via reactive absorption for sustainable ammonia synthesis, ACS Appl. Energy Mater., 3, 2576-2584 (2020). https://doi.org/10.1021/acsaem.9b02278
  11. S. Mukherjee, S. V. Devaguptapu, A. Sviripa, C. R. F. Lund, and G. Wu, Low-temperature ammonia decomposition catalysts for hydrogen generation, Appl. Catal. B: Environ., 226, 162-181 (2018). https://doi.org/10.1016/j.apcatb.2017.12.039
  12. Z. Du, D. Denkenberger, and J. M. Pearce, Solar photovoltaic powered on-site ammonia production for nitrogen fertilization, Sol. Energy, 122, 562-568 (2015). https://doi.org/10.1016/j.solener.2015.09.035
  13. F. Schuth, R. Palkovits, R. Schlogl, and D. S. Su, Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition, Energy Environ. Sci., 5, 6278-6289 (2012). https://doi.org/10.1039/C2EE02865D
  14. S. F. Yin, B. Q. Xu, X. P. Zhou, and C. T. Au, A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications, Appl. Catal. A: Gen., 277, 1-9 (2004). https://doi.org/10.1016/j.apcata.2004.09.020
  15. K. E. Lamb, M. D. Dolan, and D. F. Kennedy, Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification, Int. J. Hydrog. Energy, 11, 3580-3593 (2019).
  16. A. A. Kukhun, H. T. Hwang, and A. Varma, A Comparison of ammonia borane dehydrogenation methods for proton-exchange-membrane fuel cell vehicles: Hydrogen yield and ammonia formation and its removal, Ind. Eng. Chem. Res., 50, 8824-8835 (2011). https://doi.org/10.1021/ie102157v
  17. C. A. D. Pozo and S. Cloete, Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future, Energy Convers. Manag., 255, 115312 (2022). https://doi.org/10.1016/j.enconman.2022.115312
  18. W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer, and J. Economy, Activated carbon fiber composites for gas phase ammonia adsorption, Microporous Mesoporous Mater., 234, 146-154 (2016). https://doi.org/10.1016/j.micromeso.2016.07.011
  19. T. J. Bandosz and C. Petit, On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds, J. Colloid Interface Sci., 338, 329-345 (2009). https://doi.org/10.1016/j.jcis.2009.06.039
  20. M. Ghauri, M. Tahir, T. Abbas, M. S. Khurram, and K. Shehzad, Adsorption studies for the removal of ammonia by thermally activated carbon, Sci. Int., 24, 411-414 (2012).
  21. A. J. Rieth and M. Dinca, Controlled gas uptake in metal-organic frameworks with record ammonia sorption, J. Am. Chem. Soc., 140, 3461-3466 (2018). https://doi.org/10.1021/jacs.8b00313
  22. Y. Khabzina and D. Farrusseng, Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions, Microporous Mesoporous Mater., 265, 143-148 (2018). https://doi.org/10.1016/j.micromeso.2018.02.011
  23. W. Ouyang, S. Zheng, C. Wu, X. Hu, R. Chen, L. Zhuo, and Z. Wang, Dynamic ammonia adsorption by FAU zeolites to below 0.1 ppm for hydrogen energy applications, Int. J. Hydrog. Energy, 46, 32559-32569 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.107
  24. V. E. Sharonov and Y. I. Aristov, Ammonia adsorption by MgCl2, CaCl2 and BaCl2 confined to porous alumina: The fixed bed adsorber, React. Kinet. Catal. Lett., 85, 183-188 (2005). https://doi.org/10.1007/s11144-005-0259-5
  25. C. J. Yeom and Y. H. Kim, Adsorption of ammonia using mesoporous alumina prepared by a templating method, Environ. Eng. Res., 22, 401-406 (2017). https://doi.org/10.4491/eer.2017.045
  26. J. Helminen, J. Helenius, and E. Paatero, Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K, J. Chem. Eng. Data, 46, 391-399 (2001). https://doi.org/10.1021/je000273+
  27. C. Y. Liu and K. I. Aika, Modification of active carbon and zeolite as ammonia separation materials for a new de-NOx process with ammonia on-site synthesis, Res. Chem. Intermed., 28, 409-417 (2002). https://doi.org/10.1163/156856702760346824
  28. C. Y. Liu and K. I. Aika, Absorption and desorption behavior of ammonia with alkali earth metal halide and mixed halide, Chem. Lett., 31, 798-799 (2002). https://doi.org/10.1246/cl.2002.798
  29. M. Kubota, K. Matsuo, R. Yamanouchi, and H. Matsuda, Absorption and desorption characteristics of NH3 with metal chlorides for ammonia storage, J. Chem. Eng. Japan, 47, 542-548 (2014). https://doi.org/10.1252/jcej.13we294
  30. T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, and Y. Kojima, Review on ammonia absorption materials: Metal hydrides, halides, and borohydrides, ACS Appl. Energy Mater., 1, 232-242 (2018). https://doi.org/10.1021/acsaem.7b00111
  31. J. Wang, W. Jiang, Z. Zhang, and D. Long, Mesoporous carbon beads impregnated with transition metal chlorides for regenerative removal of ammonia in the atmosphere, Ind. Eng. Chem. Res., 56, 3283-3290 (2017). https://doi.org/10.1021/acs.iecr.7b00013
  32. C. Smith, M. Malmali, C. Y. Liu, A. V. McCormick, and E. L. Cussler, Rates of ammonia absorption and release in calcium chloride, ACS Sustain. Chem. Eng., 6, 11827-11835 (2018). https://doi.org/10.1021/acssuschemeng.8b02108
  33. T. Aoki, T. Ichikawa, H. Miyaoka, and Y. Kojima, Thermodynamics on ammonia absorption of metal halides and borohydrides, J. Phys. Chem. C, 118, 18412-18416 (2014). https://doi.org/10.1021/jp5049474
  34. X. Pan, M. Zhu, H. Mei, Z. Liu, and T. Shen, Ammonia absorption enhancement by metal halide impregnated hollow mesoporous silica spheres, ChemistrySelect, 5, 5720-5725 (2020). https://doi.org/10.1002/slct.202000965
  35. J. H. Park, H. U. Rasheed, K. H. Cho, H. C. Yoon, and K. B. Yi, Effects of magnesium loading on ammonia capacity and thermal stability of activated carbons, Korean J. Chem. Eng., 37, 1029-1035 (2020). https://doi.org/10.1007/s11814-020-0508-3
  36. C. Petit, C. Karwacki, G. Peterson, and T. J. Bandosz, Interactions of ammonia with the surface of microporous carbon impregnated with transition metal chlorides, J. Phys. Chem. C, 111, 12705-12714 (2007). https://doi.org/10.1021/jp072066n
  37. K. Song, J. H. Lim, C. G. Kim, C. S. Park, and Y. H. Kim, Enhancement of ammonia adsorption performance by impregnation of metal chlorides on surface-modified activated carbon, Appl. Chem. Eng., 32, 671-678 (2021).
  38. H. S. Hwang, I. Park, I. K. Lee, W. J. Choi, S. I. Lee, and J. Y. Lee, Synthesis and characterization of carbon dioxide sorbent by using polyethyleneimine impregnated fumed silica particles, Appl. Chem. Eng., 23, 383-387 (2012).
  39. J. U. Han, D. J. Kim, M. Kang, J. W. Kim, J. M. Kim, and J. E. Yie, Study of CO2 adsorption characteristics on acid treated and LiOH impregnated activated carbons, J. Korean Ind. Eng. Chem., 16, 312-316 (2005).
  40. A. Afriani, I. Abdullah, and Y. K. Krisnandi, Synthesis of NiCl2 impregnated mesoporous carbon and its adsorption activity on CO2, AIP Conf. Proc., 2349, 020048 (2021).
  41. Y. Chu, Y. W. Li, Q. B. Wu, J. Hu, Q. Q. Tian, H. L. Hu, and Y. P. Zhu, In-situ synthesis and discharge performance of Ni-NiCl2 composite as cathode materials for thermal batteries, J. Inorg. Mater., 31, 992-996 (2016). https://doi.org/10.15541/jim20160085
  42. N. J. A. Rahman, A. Ramli, K. Jumbri, and Y. Uemura, Tailoring the surface area and the acid-base properties of ZrO2 for biodiesel production from Nannochloropsis sp., Sci. Rep., 9, 16223 (2019). https://doi.org/10.1038/s41598-019-52771-9
  43. K. S. Rejitha, T. Ichikawa, and S. Mathew, Thermal decomposition studies of Ni(NH3)6X2 (X = Cl, Br) in the solid state using TG-MS and TR-XRD, J. Therm. Anal. Calorim., 103, 515-523 (2011). https://doi.org/10.1007/s10973-010-1054-8
  44. J. Breternitz, Y. E. Vilk, E. Giraud, H. Reardon, T. K. A. Hoang, A. G. Jopek, and D. H. Gregory, Facile uptake and release of ammonia by nickel halide ammines, ChemSusChem, 9, 1312-1321 (2016). https://doi.org/10.1002/cssc.201600140