DOI QR코드

DOI QR Code

Mixotrophic Cultivation of Marine Alga Tetraselmis sp. Using Glycerol and Its Effects on the Characteristics of Produced Biodiesel

  • Dang, Nhat Minh (VNU Key Laboratory of Advanced Materials for Green Growth, VNU University of Science, Vietnam National University) ;
  • Kim, Garam (Department of Environmental Engineering and Energy, Myongji University) ;
  • Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
  • Received : 2022.02.16
  • Accepted : 2022.03.08
  • Published : 2022.04.10

Abstract

As a possible feedstock for biodiesel, the marine green alga Tetraselmis sp. was cultivated under different conditions of phototrophic, mixotrophic and heterotrophic cultures. Glycerol, a byproduct from biodiesel production process, was used as the carbon source of mixotrophic and heterotrophic culture. The effects of glycerol supply and nitrate-repletion were compared for different trophic conditions. Mixotrophic cultivation exhibited higher biomass productivity than that of phototrophic and heterotrophic cultivation. Maximum lipid productivity of 55.5 mg L-1 d-1 was obtained in the mixotrophic culture with 5 g L-1 of glycerol and 8.8 mM of nitrate due to the enhancement of both biomass and lipid accumulation. The major fatty acid methyl esters (FAME) in the produced biodiesel were palmitic acid (C16:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3). The degree of unsaturation was affected by different culture conditions. The biodiesel properties predicted by correlation equations based on the FAME profiles mostly complied with the specifications from the US, Europe and Korea, with the exception of the cold-filter plugging point (CFPP) criterion of Korea.

Keywords

Acknowledgement

This research was supported by the 2021 Research Fund of Myongji University.

References

  1. H. A. Aratboni, N. Rafiei, R. Garcia-Granados, A. Alemzadeh, and J. R. Morones-Ramirez, Biomass and lipid induction strategies in microalgae for biofuel production and other applications, Microb. Cell Fact. 18, 178 (2019). https://doi.org/10.1186/s12934-019-1228-4
  2. C. Yeesang and B. Cheirsilp, Low-cost production of green micro-alga Botryococcus braunii biomass with high lipid content through mixotrophic and photoautotrophic cultivation, Appl. Biochem. Biotechnol. 174, 116-129 (2014). https://doi.org/10.1007/s12010-014-1041-9
  3. A. Nicodemou, M. Kallis, A. Agapiou, A. Markidou, and M. Koutinas, M. The effect of trophic modes on biomass and lipid production of five microalgal strains, Water 14, 240 (2022). https://doi.org/10.3390/w14020240
  4. S. J. Sarma, R. K. Das, S. K. Brar, Y. L. Bihan, G. Buelna, M. Verma, and C. R. Soccol, Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste, Energy 78, 16-22 (2014). https://doi.org/10.1016/j.energy.2014.04.112
  5. F. Abiusi, R. H. Wijffels, and M. Janssen, Oxygen balanced mixotrophy under day-night cycles, ACS Sustain. Chem. Eng. 8, 11682-11691 (2020). https://doi.org/10.1021/acssuschemeng.0c03216
  6. F. Abiusi, R. H. Wijffels, and M. Janssen, Doubling of microalgae productivity by oxygen balanced mixotrophy, ACS Sustain. Chem. Eng. 8, 6065-6074 (2020). https://doi.org/10.1021/acssuschemeng.0c00990
  7. T. U. Harwati, T. Willke, and K. D. Vorlop, Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp., Bioresour. Technol. 121, 54-60 (2012). https://doi.org/10.1016/j.biortech.2012.06.098
  8. M. P. Rai, S. Nigam, and R. Sharma, Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application, Biomass Bioenergy 58, 251-257 (2013). https://doi.org/10.1016/j.biombioe.2013.08.038
  9. V. Kumar, M. Muthuraj, B. Palabhanvi, A. K. Ghoshal, and D. Das, High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition, Bioresour. Technol. 170, 115-124 (2014). https://doi.org/10.1016/j.biortech.2014.07.066
  10. N. M. Dang and K. Lee, Recent trends of using alternative nutrient sources for microalgae cultivation as a feedstock of biodiesel production, Appl. Chem. Eng., 29, 1-9 (2018). https://doi.org/10.14478/ACE.2018.1002
  11. G. B. Leite, K. Paranjape, A. E. M. Abdelaziz, and P. C. Hallenbeck, Utilization of biodiesel-derived glycerol or xylose for increased growth and lipid production by indigenous microalgae, Bioresour. Technol. 184, 123-130 (2015). https://doi.org/10.1016/j.biortech.2014.10.117
  12. N. M. Dang and K. Lee, Recycling of lipid-extracted algae cell residue for microorganisms cultivation and bioenergy production, Appl. Chem. Eng., 32, 487-496 (2021). https://doi.org/10.14478/ACE.2021.1076
  13. M. S. Rana and S. K. Prajapati, Stimulating effects of glycerol on the growth, phycoremediation and biofuel potential of Chlorella pyrenoidosa cultivated in wastewater, Environ. Technol. Innov. 24, 102082 (2021), . https://doi.org/10.1016/j.eti.2021.102082
  14. V. Andruleviciute, V. Makareviciene, V. Skorupskaite, and M. Gumbyte, Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp., and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol, J. Appl. Phycol. 26, 83-90 (2014). https://doi.org/10.1007/s10811-013-0048-x
  15. N. Laraib, M. Manzoor, A. F. Jabeen, S. M. Bukhari, W. Ali, and A. Hussain, Mixotrophic cultivation of Chlorella vulgaris in sugarcane molasses preceding nitrogen starvation: Biomass productivity, lipid content, and fatty acid analyses, Environ. Prog. Sustain. Energy 40, e13625 (2021)
  16. C. G. Lee, D. H. Seong, S. M. Lim, and J. H. Bae, A novel Tetraselmis sp. and method for preparing biodiesel with this strain. Korean Patent 10-1509562 (2015)
  17. G. Kim, J. Bae, and K. Lee, Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp., Bioresour. Technol. 205, 274-279 (2016). https://doi.org/10.1016/j.biortech.2016.01.045
  18. E. G. Bligh and W. J. Dyer, A rapid method for total lipid extraction and purification, Can. J. Biochem. Physiol. 37, 911-917 (1959). https://doi.org/10.1139/y59-099
  19. S. V. Wychen and L. M. L. Laurens, Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification. Laboratory analytical procedure, NREL, USA (2013).
  20. R. O. Dunn and M. O. Bagby, Low-temperature properties of triglyceride-based diesel fuels: Transesterified methyl esters and petroleum middle distillate/ester blends, J. Am. Oil Chem. Soc. 72, 895-904 (1995). https://doi.org/10.1007/BF02542067
  21. M. Meira, C. M. Quintella, A. d. S. Tanajura, H. R. G. da Silva, J. D. S. Fernando, P. R. da Costa Neto, I. M. Pepe, M. A. Santos, and L. L. Nascimento, Determination of the oxidation stability of biodiesel and oils by spectrofluorimetry and multivariate calibration, Talanta 85, 430-434 (2011) https://doi.org/10.1016/j.talanta.2011.04.002
  22. J. Y. Park, D. K. Kim, J. P. Lee, S. C. Park, Y. J. Kim, and J. S. Lee, Blending effects of biodiesels on oxidation stability and low temperature flow properties, Bioresour. Technol. 99, 1196-1203 (2008). https://doi.org/10.1016/j.biortech.2007.02.017
  23. S. Babuskin, K. Radhakrishnan, P. A. S. Babu, M. Sivarajan, and M. Sukumar, Effect of photoperiod, light intensity and carbon sources on biomass and lipid productivities of Isochrysis galbana, Biotechnol. Lett. 36, 1653-1660 (2014). https://doi.org/10.1007/s10529-014-1517-2
  24. G. Kim, J. Bae, and K. Lee, Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp., Bioresour. Technol. 205, 274-279 (2016). https://doi.org/10.1016/j.biortech.2016.01.045
  25. S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, and M. Natarajan, Review of biodiesel composition, properties, and specifications, Renew. Sustain. Energy Rev. 16, 2012, 143-169 (2012). https://doi.org/10.1016/j.rser.2011.07.143
  26. M. Serrano, R. Oliveros, M. Sanchez, A. Moraschini, M. Martinez, and J. Aracil, Influence of blending vegetable oil methyl esters on biodiesel fuel properties: Oxidative stability and cold flow properties, Energy 65, 109-115 (2014). https://doi.org/10.1016/j.energy.2013.11.072
  27. K. Choi, S. Park, H. G. Roh, and C. S. Lee, Research on the combustion, energy and emission parameters of various concentration blends of hydrotreated vegetable oil biofuel and diesel fuel in a compression-ignition engine, Energies 12, 2978 (2019). https://doi.org/10.3390/en12152978
  28. I. Tasic, M. Tomic, A. Aleksic, N. Durisic-Mladenovic, F. Martinovic, and R. D. Micic, Improvement of low-temperature characteristics of biodiesel by additivation, Hemijska Industrija, 73, 103-114 (2019). https://doi.org/10.2298/hemind190117009t
  29. K.A. Sorate and P.V. Bhale, Biodiesel properties and automotive system compatibility issues, Renew. Sustain. Energy Rev. 41, 777-798 (2015). https://doi.org/10.1016/j.rser.2014.08.079
  30. D.-M. Lee, M. Lee, J.-H. Ha, Y. Ryu, C.Y Choi, S.-H. Shim, S.-M. Lim, C.-G. Lee, and B.-H. Lee, A Study on the oxidation characteristics of micro-algal bio diesel derived from Dunaliella tertiolecta LB999, J. Mar. Biosci. Biotechnol. 7, 1-10 (2015). https://doi.org/10.15433/KSMB.2015.7.1.001