DOI QR코드

DOI QR Code

Sensitive and Selective Electrochemical Glucose Biosensor Based on a Carbon Nanotube Electronic Film

탄소나노튜브 전자 필름을 이용한 고감도-고선택성 전기화학 글루코스 센서

  • Lee, Seung-Woo (Department of Fine Chemistry, Seoul National University of Science and Technology) ;
  • Lee, Dongwook (Department of Fine Chemistry, Seoul National University of Science and Technology) ;
  • Seo, Byeong-Gwuan (Department of Fine Chemistry, Seoul National University of Science and Technology)
  • 이승우 (서울과학기술대학교 정밀화학과) ;
  • 이동욱 (서울과학기술대학교 정밀화학과) ;
  • 서병관 (서울과학기술대학교 정밀화학과)
  • Received : 2022.03.07
  • Accepted : 2022.03.15
  • Published : 2022.04.10

Abstract

This work presents a non-destructive and straightforward approach to assemble a large-scale conductive electronic film made of a pre-treated single-walled carbon nanotube (SWCNT) solution. For effective electron transfer between the immobilized enzyme and SWCNT electronic film, we optimized the pre-treatment step of SWCNT with p-terphenyl-4,4"-dithiol and dithiothreitol. Glucose oxidase (GOx, a model enzyme in this study) was immobilized on the SWCNT electronic film following the positively charged polyelectrolyte layer deposition. The glucose detection was realized through effective electron transfer between the immobilized GOx and SWCNT electronic film at the negative potential value (-0.45 V vs. Ag/AgCl). The SWCNT electronic film-based glucose biosensor exhibited a sensitivity of 98 ㎂/mM·cm2. In addition, the SWCNT electronic film biosensor showed the excellent selectivity (less than 4 % change) against a variety of redox-active interfering substances, such as ascorbic acid, uric acid, dopamine, and acetaminophen, by avoiding co-oxidation of the interfering substances at the negative potential value.

본 연구에서는 비파괴적 표면 기능기화 통하여 단일벽 탄소나노튜브(SWCNT) 탄소소재의 특성 변화를 최소화 시킬 수 있는 대면적화 공법을 제안하고, 대면적화 된 SWNT 전자 필름 상에 효소를 집적하여 효소와 SWCNT 전자 필름 간 효율적 전자 전달을 연구하였다. p-terphenyl-4,4"-dithiol, dithiothreitol와 SWCNT의 혼합을 통해 SWCNT 전자 필름의 균일도 및 전하 전달 능력을 향상시키고, 분광학적 분석 및 전기화학적 특성을 평가하여 SWCNT 전자 필름의 향상된 전기화학적 특성을 확인하였다. 전자 필름 상에 고분자 전해질 및 포도당 산화환원 효소를 layer-by-layer 기법으로 효율적으로 집적하여, 최종적으로 음전압 범위에서 구동이 가능한 포도당(glucose) 바이오센서를 구현하였다. 개발된 포도당 바이오센서는 효소와 SWCNT 전자 필름과의 높은 전하 전달 효율을 바탕으로 -0.45 vs. Ag/AgCl 음전압 범위에서 높은 산화환원 신호를 보였을 뿐 아니라 0~1 mM의 낮은 글루코스 농도 변화에서 약 98 ㎂/mM·cm2의 높은 감도를 보였다. 또한 음전압 구동을 통하여, 산화 반응을 일으킬 수 있는 4종의 방해물질(요산, 아스코르빅산, 도파민, 아세타아미노펜) 환경에서 4% 이하의 변화를 보여 높은 선택성을 보였다.

Keywords

Acknowledgement

본 성과는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구이다 (NRF-2020R1C1C1005743).

References

  1. J. Wang, Glucose biosensors: 40 years of advances and challenges, Electroanalysis, 13, 983-988 (2001). https://doi.org/10.1002/1521-4109(200108)13:12<983::AID-ELAN983>3.0.CO;2-#
  2. N. J. Ronkainen, H. B. Halsall, and W. R. Heineman, Electrochemical biosensors, Chem. Soc. Rev., 39, 1747-1763 (2010). https://doi.org/10.1039/b714449k
  3. C. Jang, H. J. Lee, and J. G. Yook, Radio-frequency biosensors for real-time and continuous glucose detection, Sensors, 21, 1843 (2021). https://doi.org/10.3390/s21051843
  4. M. Hatada, N. Loew, Y. Inose-Takahashi, J. Okuda-Shimazaki, W. Tsugawa, A. Mulchandani, and K. Sode, Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference, Bioelectrochemistry, 121, 185-190 (2018). https://doi.org/10.1016/j.bioelechem.2018.02.001
  5. Y. X. Liu, J. Zhang, Y. Cheng, and S. P. Jiang, Effect of carbon nanotubes on direct electron transfer and electrocatalytic activity of immobilized glucose oxidase, ACS Omega, 3, 667-676 (2018). https://doi.org/10.1021/acsomega.7b01633
  6. Z. Y. Yin, Z. W. Ji, W. D. Zhang, E. W. Taylor, X. P. Zeng, and J. J. Wei, The glucose effect on direct electrochemistry and electron transfer reaction of glucose oxidase entrapped in a carbon nanotube-Polymer Matrix, ChemistrySelect, 5, 12224-12231 (2020). https://doi.org/10.1002/slct.202003536
  7. Y. Y. Yu, Z. G. Chen, S. J. He, B. B. Zhang, X. C. Li, and M. C. Yao, Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode, Biosens. Bioelectron., 52, 147-152 (2014). https://doi.org/10.1016/j.bios.2013.08.043
  8. B. Liang, X.S. Guo, L. Fang, Y.C. Hu, G. Yang, Q. Zhu, J. W. Wei, and X.S. Ye, Study of direct electron transfer and enzyme activity of glucose oxidase on graphene surface, Electrochem. Commun., 50, 1-5 (2015). https://doi.org/10.1016/j.elecom.2014.10.016
  9. J. T. Holland, C. Lau, S. Brozik, and P. Atanassov, S. Banta, Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation, J. Am. Chem. Soc., 133, 19262-19265 (2011). https://doi.org/10.1021/ja2071237
  10. X. P. Zhang, D. Liu, L. B. Li, and T. Y. You, Direct electrochemistry of glucose oxidase on novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers composite film, Sci. Rep., 5, 9885 (2015). https://doi.org/10.1038/srep09885
  11. S. Y. Yu, and N. V. Myung, Recent advances in the direct electron transfer-enabled enzymatic fuel cells, Front. Chem., 8 (2021).
  12. P. May, S. Laghmari, and M. Ulbricht, Concentration polarization enabled reactive coating of nanofiltration membranes with zwitterionic hydrogel, Membranes, 11 187 (2021). https://doi.org/10.3390/membranes11030187
  13. D. Lee, H.-H. Ahn, B.-G. Seo, and S.-W. Lee, Highly sensitive and selective enzymatic detection for hydrogen peroxide using a non-destructively assembled single-walled carbon nanotube film, J. Sens. Sci. Technol., 30, 229-235 (2021). https://doi.org/10.46670/JSST.2021.30.4.229
  14. E. M. Perez, and N. Martin, π-π interactions in carbon nanostructures, Chem. Soc. Rev., 44, 6425-6433 (2015). https://doi.org/10.1039/C5CS00578G
  15. X. Li, Y. F. Gao, and M. J. Serpe, Reductant-responsive poly(N-isopropylacrylamide) microgels and microgel-based optical materials, Can. J. Chem., 93, 685-689 (2015). https://doi.org/10.1139/cjc-2014-0555
  16. Y. S. Park, K. P. S. S. Hembram, R. Yoo, B. G. Jang, W. Y. Lee, S.-G. Lee, J.-G. Kim, Y.-I. Kim, D.J. Moon, J.-K. Lee, and J.-K. Lee, Reinterpretation of single-wall carbon nanotubes by raman spectroscopy, J. Phys. Chem. C, 123, 14003-14009 (2019). https://doi.org/10.1021/acs.jpcc.9b02174
  17. Y. Z. Niu, J. L. He, Y. L. Li, Y. L. Zhao, C. Y. Xia, G. L. Yuan, L. Zhang, Y. C. Zhang, and C. Yu, Determination of alpha 2,3-sialylated glycans in human serum using a glassy carbon electrode modified with carboxylated multiwalled carbon nanotubes, a polyamidoamine dendrimer, and a glycan-recognizing lectin from Maackia Amurensis, Microchim. Acta., 183, 2337-2344 (2016). https://doi.org/10.1007/s00604-016-1873-9
  18. L. Wei, and G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors, Nano Energy, 1, 552-565 (2012). https://doi.org/10.1016/j.nanoen.2012.05.002
  19. J. Galban, V. Sanz, E. Mateos, I. Sanz-Vicente, A. Delgado-Camon, and S. de Marcos, Reagentless optical biosensors for organic compounds based on autoindicating proteins, Protein Pept. Lett., 15, 772-778 (2008). https://doi.org/10.2174/092986608785203782
  20. A. Devadoss, R. Forsyth, R. Bigham, H. Abbasi, M. Ali, Z. Tehrani, Y. F. Liu, and O. J. Guy, Ultrathin functional polymer modified graphene for enhanced enzymatic electrochemical sensing, Biosensors, 9, 16 (2019). https://doi.org/10.3390/bios9010016
  21. A. Nemiroski, D.C. Christodouleas, J. W. Hennek, A. A. Kumar, E. J. Maxwell, M. T. Fernandez-Abedul, and G. M. Whitesides, Universal mobile electrochemical detector designed for use in resource-limited applications, Proc. Natl. Acad. Sci. U. S. A., 111, 11984-11989 (2014). https://doi.org/10.1073/pnas.1405679111