DOI QR코드

DOI QR Code

Recent Progress on Adsorptive Removal of Cd(II), Hg(II), and Pb(II) Ions by Post-synthetically Modified Metal-organic Frameworks and Chemically Modified Activated Carbons

  • Received : 2022.01.14
  • Accepted : 2022.02.14
  • Published : 2022.04.10

Abstract

Fast-paced industrial and agricultural development generates large quantities of hazardous heavy metals (HMs), which are extremely damaging to individuals and the environment. Research in both academia and industry has been spurred by the need for HMs to be removed from water bodies. Advanced materials are being developed to replace existing water purification technologies or to introduce cutting-edge solutions that solve challenges such as cost efficacy, easy production, diverse metal removal, and regenerability. Water treatment industries are increasingly interested in activated carbon because of its high adsorption capacity for HMs adsorption. Furthermore, because of its huge surface area, abundant functional groups on surface, and optimal pore diameter, the modified activated carbon has the potential to be used as an efficient adsorbent. Metal-organic frameworks (MOFs), a novel organic-inorganic hybrid porous materials, sparked an interest in the elimination of HMs via adsorption. This is due to the their highly porous nature, large surface area, abundance of exposed adsorptive sites, and post-synthetic modification (PSM) ability. This review introduces PSM methods for MOFs, chemical modification of activated carbons (ACs), and current advancements in the elimination of Pb2+, Hg2+, and Cd2+ ions from water using modified MOFs and ACs via adsorption.

Keywords

Acknowledgement

This work was supported by the "Green Innovative Company Growth Support Program" of the Korean Ministry of Environment.

References

  1. H. Demey, T. Vincent, and E. Guibal, A novel algal-based sorbent for heavy metal removal, Chem. Eng. J., 332, 582-595 (2018). https://doi.org/10.1016/j.cej.2017.09.083
  2. V. Kumar, R. D. Parihar, A. Sharma, P. Bakshi, G. P. S. Sidhu, A. S. Bali, I. Karaouzas, R. Bhardwaj, A. K. Thukral, Y. Gyasi-Agyei, and J. Rodrigo-Comino, Global evaluation of heavy metal content in surface water bodies: a meta-analysis using heavy metal pollution indices and multivariate statistical analyses, Chemosphere, 236, 124364 (2019). https://doi.org/10.1016/j.chemosphere.2019.124364
  3. S. Ozdemir, M. S. Yalcin, and E. Kilinc, Preconcentrations of Ni (II) and Pb (II) from water and food samples by solid-phase extraction using Pleurotus ostreatus immobilized iron oxide nanoparticles, Food Chem., 336, 127675 (2021). https://doi.org/10.1016/j.foodchem.2020.127675
  4. S. Ali, S. Hussain, R. Khan, S. Mumtaz, N. Ashraf, S. Andleeb, H. A. Shakir, H. M. Tahir, M. K. A. Khan, and M. Ulhaq, Renal toxicity of heavy metals (cadmium and mercury) and their amelioration with ascorbic acid in rabbits, Environ. Sci. Pollut. Res., 26, 3909-3920 (2019). https://doi.org/10.1007/s11356-018-3819-8
  5. K. Byber, D. Lison, V. Verougstraete, H. Dressel, and P. Hotz, Cadmium or cadmium compounds and chronic kidney disease in workers and the general population: a systematic review, Crit. Rev. Toxicol., 46, 191-240 (2016). https://doi.org/10.3109/10408444.2015.1076375
  6. S. Morais, F. G. Costa, and M. D. L. Pereira, Heavy Metals and Human Health, In: J. Oosthuizen (ed.), Environmental Health - Emerging Issues and Practice, 227-245, IntechOpen (2012).
  7. M. A. D. Toral, A. Porter and M. R. Schock, Detection and evaluation of elevated lead release from service lines: A field study, Environ. Sci. Technol., 47, 9300-9307(2013). https://doi.org/10.1021/es4003636
  8. B. Liu, A. Khan, K-H. Kim, D. Kukkar, and M. Zhang, The adsorptive removal of lead ions in aquatic media: Performance comparison between advanced functional materials and conventional materials, Crit. Rev. Environ. Sci. Technol., 50, 2441-2483 (2020). https://doi.org/10.1080/10643389.2019.1694820
  9. G. Genchi, M. S. Sinicropi, G. Lauria, A. Carocci, and A. Catalano, The effects of cadmium toxicity, Int. J. Environ. Res. Public Health, 17, 3782 (2020). https://doi.org/10.3390/ijerph17113782
  10. R. A. Bernhoft, Mercury toxicity and treatment: a review of the literature, J. Environ. Public Health, 2012, 460508 (2012). https://doi.org/10.1155/2012/460508
  11. M. Mariana, A. Khalil, E. M. Mistar, E. B. Yahya, T. Alfatah, M. Danish, and M. Amayreh, Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption, J. Water Process Eng., 43, 102221 (2021). https://doi.org/10.1016/j.jwpe.2021.102221
  12. F. Fu and Q. Wang, Removal of heavy metal ions from waste-waters: A review, J. Environ. Manage., 92, 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  13. D. Norton-Brandao, S. M. Scherrenberg, and J. B. V. Lier, Reclamation of used urban waters for irrigation purposes-A review of treatment technologies, J. Environ. Manage., 122, 85-98 (2013). https://doi.org/10.1016/j.jenvman.2013.03.012
  14. Y. Huang, X. Zeng, L. Guo, J. Lan, L. Zhang, and D. Cao, Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks, Sep. Purif. Technol., 194, 462-469 (2018). https://doi.org/10.1016/j.seppur.2017.11.068
  15. S. M. Abegunde, K. S. Idowu, O. M. Adejuwon, and T. Adeyemi-Adejolu, A review on the influence of chemical modification on the performance of Adsorbents, Resour. Environ. Sustain., 1, 100001 (2020).
  16. M. K. Jha, S. Joshi, R. K. Sharma, A. A. Kim, B. Pant, M. Park, and H. R. Pant, Surface Modified Activated Carbons: Sustainable bio-based materials for environmental remediation, Nanomaterials, 11, 3140 (2021). https://doi.org/10.3390/nano11113140
  17. Y. Chen, X. Bai, and Z. Ye, Recent progress in heavy metal ion decontamination based on metal-organic frameworks, Nanomaterials, 11, 1481 (2020).
  18. Z. Yuna, Review of the Natural, modified, and synthetic zeolites for heavy metals removal from wastewater, Environ. Eng. Sci., 33, 443-454 (2016). https://doi.org/10.1089/ees.2015.0166
  19. S. Mao and M. Gao, Functional organoclays for removal of heavy metal ions from water: A review, J. Mol. Liq., 334, 116143 (2021). https://doi.org/10.1016/j.molliq.2021.116143
  20. G-R. Xu, Z-H. An, K. Xu, Q. Liu, R. Das, and He-Li Zhao, Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications, Coord. Chem. Rev., 427, 213554 (2021). https://doi.org/10.1016/j.ccr.2020.213554
  21. X. Yang and Q. Xu, Bimetallic metal-organic frameworks for gas storage and separation, Cryst. Growth Des., 17, 1450-1455 (2017). https://doi.org/10.1021/acs.cgd.7b00166
  22. H. Li, L. B. Li, R. B. Lin, W. Zhou, Z. J. Zhang, S. C. Xiang and B. L. Chen, Porous metal-organic frameworks for gas storage and separation: Status and challenges, EnergyChem, 1, 100006 (2019). https://doi.org/10.1016/j.enchem.2019.100006
  23. X. R. Li, X. C. Yang, H. G. Xue, H. Pang, and Q. Xu, Metal-organic frameworks as a platform for clean energy applications, EnergyChem, 2, 100027 (2020). https://doi.org/10.1016/j.enchem.2020.100027
  24. P. Samanta, A. V. Desai, S. Sharma, P. Chandra, and S. K. Ghosh, Selective recognition of Hg2+ ion in water by a functionalized metal-organic framework (MOF) based chemodosimeter, Inorg. Chem., 57, 2360-2364 (2018). https://doi.org/10.1021/acs.inorgchem.7b02426
  25. M. X. Wu and Y. W. Yang, Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy, Adv. Mater., 29, 1606134 (2017). https://doi.org/10.1002/adma.201606134
  26. F. Y. Yi, D. Chen, M. K. Wu, L. Han, and H. L. Jiang, Chemical sensors based on metal-organic frameworks, ChemPlusChem, 81, 675-690 (2016). https://doi.org/10.1002/cplu.201600137
  27. B. L. Zhang, W. Qiu, P. P. Wang, Y. L. Liu, J. Zou, L. Wang, and J. Ma, Mechanism study about the adsorption of Pb(II) and Cd(II) with iron-trimesic metal-organic frameworks, Chem. Eng. J., 385, 123507 (2020). https://doi.org/10.1016/j.cej.2019.123507
  28. Z. S. Hasankola, R. Rahimi, H. Shayegan, E. Moradi, and V. Safarifard, Removal of Hg2+ heavy metal ion using a highly stable mesoporous porphyrinic zirconium metal-organic framework, Inorganica Chim. Acta, 501, 119264 (2020). https://doi.org/10.1016/j.ica.2019.119264
  29. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295, 469-472 (2002). https://doi.org/10.1126/science.1067208
  30. R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O'Keeffe, and O. M. Yaghi, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties, J. Am. Chem. Soc., 131, 3875-3877 (2009). https://doi.org/10.1021/ja809459e
  31. T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B. Moulin, D. Heurtaux, G. Clet, A. Vimont, J.-M. Greneche, B. L. Ouay, F. Moreau, E. Magnier, Y. Filinchuk, J. Marrot, J.-C. Lavalley, M. Daturi, and G. Ferey, Functionalization in flexible porous solids: Effects on the pore opening and the host-guest interactions, J. Am. Chem. Soc., 132, 1127-1136 (2010). https://doi.org/10.1021/ja9092715
  32. K. Wang, J. Gu, and N. Yin, Efficient removal of Pb(II) and Cd(II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis, Ind. Eng. Chem. Res., 56, 1880-1887 (2017). https://doi.org/10.1021/acs.iecr.6b04997
  33. L. Zhang, J. Wang, T. Du, W. Zhang, W. Zhu, C. Yang, T. Yue, J. Sun, T. Li, and J. Wang, NH2-MIL-53(Al) metal-organic framework as the smart platform for simultaneous high-performance detection and removal of Hg2+, Inorg. Chem., 58, 12573-12581 (2019). https://doi.org/10.1021/acs.inorgchem.9b01242
  34. K. K. Tanabea and S. M. Cohen, Postsynthetic modification of metal-organic frameworks-a progress report, Chem. Soc. Rev., 40, 498-519 (2011). https://doi.org/10.1039/c0cs00031k
  35. Z. Wang and S. M. Cohen, Postsynthetic modification of metal-organic frameworks, Chem. Soc. Rev., 38, 1315-1329 (2009). https://doi.org/10.1039/b802258p
  36. S. J. Garibay, Z. Wang, K. K. Tanabe, and S. M. Cohen, Postsynthetic modification: A versatile approach toward multifunctional metal-organic frameworks, Inorg. Chem., 48, 7341-7349 (2009). https://doi.org/10.1021/ic900796n
  37. Z. Wang, K. K. Tanabe, and S. M. Cohen, Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity, Inorg. Chem., 48, 296-306 (2009). https://doi.org/10.1021/ic801837t
  38. Z. Wang and S. M. Cohen, Postsynthetic covalent modification of a neutral metal-organic framework, J. Am. Chem. Soc., 129, 12368-12369 (2007). https://doi.org/10.1021/ja074366o
  39. L. Fu, S. Wang, G. Lin, L. Zhang, Q. Liu, H. Zhou, C. Kang, S. Wan, H. Li, and Sheng Wen, Post-modification of UiO-66-NH2 by resorcyl aldehyde for selective removal of Pb(II) in aqueous media, J. Clean. Prod., 229, 470-479 (2019). https://doi.org/10.1016/j.jclepro.2019.05.043
  40. S. S. Y. Chui, S. I. M. -F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n, Science, 283, 1148 (1999). https://doi.org/10.1126/science.283.5405.1148
  41. Y. K. Hwang, D. -Y. Hong, J. -S. Chang, S. H. Jhung, Y. -K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, and G. Ferey, Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation, Angew. Chem. Int. Ed., 47, 4144-4148 (2008). https://doi.org/10.1002/anie.200705998
  42. M. Kalaj and S. M. Cohen, Postsynthetic modification: An enabling technology for the advancement of metal-organic frameworks, ACS Cent. Sci., 6, 1046-1057 (2020). https://doi.org/10.1021/acscentsci.0c00690
  43. F. Ke, L.-G. Qiu, Y.-P. Yuan, F.-M. Peng, X. Jiang, A.-J. Xie, Y.-H. Shen, and J.-F. Zhu, Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water, J. Hazard. Mater., 196, 36-43 (2011). https://doi.org/10.1016/j.jhazmat.2011.08.069
  44. Y. Zhou, W. Li, W. Qi, S. Chen, Q. Tan, Z. Wei, L. Gong, J. Chen, and W. Zhou, The comprehensive evaluation model and optimization selection of activated carbon in the O3-BAC treatment process, J. Water Process Eng., 40, 101931 (2021). https://doi.org/10.1016/j.jwpe.2021.101931
  45. I. Ali, M. Asim, and T. A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 113, 170-183 (2012). https://doi.org/10.1016/j.jenvman.2012.08.028
  46. S. Hadi and K. Tahereh, Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal, J. Ind. Eng. Chem., 16, 852-858 (2010). https://doi.org/10.1016/j.jiec.2010.03.012
  47. L. Mouni, L. Belkhiri, M. Tafer, F. Zouggaghe, and Y. Kadmi, Studies on the removal of Pb(II) from wastewater by activated carbon developed from apricot stone activated with sulphuric acid, Moroc. J. Chem., 2, 452-456 (2014).
  48. Md. M. Rahman, S. H. Samsuddin, M. F. Miskon, K. Yunus, and A. M. Yusof, Phosphoric acid activated carbon as borderline and soft metal ions scavenger, Green Chem. Lett. Rev., 8, 9-20 (2015). https://doi.org/10.1080/17518253.2015.1058974
  49. H. Farida, B. Okta, and L. Wirani, Characterization of activated carbon from rice husk by HCl activation and its application for lead (Pb) removal in car battery wastewater, IOP Conf. Ser.: Mater. Sci. Eng., 180, 012151 (2017). https://doi.org/10.1088/1757-899X/180/1/012151
  50. J. P. Chen, S. Wu, and K-H. Chong, Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption, Carbon, 41, 1979-1986 (2003). https://doi.org/10.1016/S0008-6223(03)00197-0
  51. H. Tamon and M. Okazaki, Influence of acidic surface oxides of activated carbon on gas adsorption characteristics, Carbon, 34, 741-746 (1996). https://doi.org/10.1016/0008-6223(96)00029-2
  52. B. Huang, G. Liu, P. Wang, X. Zhao, and H. Xu, Effect of nitric acid modification on characteristics and adsorption properties of lignite, Processes, 7, 167 (2019). https://doi.org/10.3390/pr7030167
  53. B. S. Girgis, A. A. Attia, and N. A. Fathy, Modification in adsorption characteristics of activated carbon produced by H3PO4 under flowing gases, Colloids Surf. A: Physicochem. Eng. Asp., 299, 79-87 (2007). https://doi.org/10.1016/j.colsurfa.2006.11.024
  54. H. Ge and J. Wang, Ear-like poly (acrylic acid)-activated carbon nanocomposite: A highly efficient adsorbent for removal of Cd(II) from aqueous solutions, Chemosphere, 169, 443-449 (2017). https://doi.org/10.1016/j.chemosphere.2016.11.069
  55. J. P. Chen, S. Wu, and K-H. Chong, Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption, Carbon, 41, 1979-1986 (2003). https://doi.org/10.1016/S0008-6223(03)00197-0
  56. K. Yang, L. Zhu, J. Yang, and D. Lin, Adsorption and correlations of selected aromatic compounds on a KOH-activated carbon with large surface area, Sci. Total Environ., 618, 1677-1684 (2018). https://doi.org/10.1016/j.scitotenv.2017.10.018
  57. Z. Liu, Y. Sun, X. Xu, J. Qu, and B. Qu, Adsorption of Hg(II) in an aqueous solution by activated carbon prepared from rice husk using KOH activation, ACS Omega, 5, 29231-29242 (2020). https://doi.org/10.1021/acsomega.0c03992
  58. R. Shahrokhi-Shahraki, C. Benally, M. G. El-Din, and J. Park, High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms, Chemosphere, 264, 128455 (2021). https://doi.org/10.1016/j.chemosphere.2020.128455
  59. S. Norouzi, M. Heidari, V. Alipour, O. Rahmanian, M. Fazlzadeh, F. M. moghadam, H. Nourmoradi, B. Goudarzi, and K. Dindarloo, Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste, Bioresour. Technol., 258, 48-56 (2018). https://doi.org/10.1016/j.biortech.2018.02.106
  60. Q. Zhang, R. Wu, Y. Zhou, Q. Lin, and C. Fang. A novel surface-oxidized rigid carbon foam with hierarchical macro-nanoporous structure for efficient removal of malachite green and lead ion, J. Mater. Sci. Technol., 103, 15-28 (2022). https://doi.org/10.1016/j.jmst.2021.07.012
  61. Y. Liu, X. Xu, B. Qu, X. Liu, W. Yi, and H. Zhang, Study on adsorption properties of modified corn cob activated carbon for mercury ion, Energies, 14, 4483 (2021). https://doi.org/10.3390/en14154483
  62. Y. Wang and R. Liu, H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions, Sci. Total Environ., 628-629, 1139-1148 (2018). https://doi.org/10.1016/j.scitotenv.2018.02.137
  63. M. Farnane, A. Machrouhi, M. Khnifira, M. Barour, R. Elmoubarki, S. Qourzal, H. Tounsadi, and N. Barka, Zinc chloride activation of carob shells for heavy metals removal from water: statistical optimisation, characterisation and isotherm modelling, Int. J. Environ. Anal. Chem., Doi:10.1080/03067319.2020.1777290.
  64. A. Dzigbor and A. Chimphango, Production and optimization of NaCl-activated carbon from mango seed using response surface methodology, Biomass Convers. Biorefin., 9, 421-431 (2019). https://doi.org/10.1007/s13399-018-0361-3
  65. A. Nayak, B. V. Gupta, and P. Sharma, Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: effect of activation conditions, J. Colloid Interface Sci., 493, 228-240 (2017). https://doi.org/10.1016/j.jcis.2017.01.031
  66. Y. Wu, Y. Fan, M. Zhang, Z. Ming, S. Yang, A. Arkin, and P. Fang, Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems, Biochem. Eng. J., 105, 27-35 (2016). https://doi.org/10.1016/j.bej.2015.08.017
  67. Z. Ding, R. Yu, X. Hu, and Y. Chen, Adsorptive removal of Hg (II) ions from aqueous solutions using chemical-modified peanut hull powder, Pol. J. Environ. Stud., 23, 1115-1121 (2014).
  68. X. Xie, H. Gao, X. Luo, T. Su, Y. Zhang, and Z. Qin, Polyethyleneimine modified activated carbon for adsorption of Cd(II) in aqueous solution, J. Environ. Chem. Eng., 7, 103183 (2019). https://doi.org/10.1016/j.jece.2019.103183
  69. T. A. Saleh, A. Sari, and M. Tuzen, Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon, J. Environ. Chem. Eng., 5, 1079-1088 (2017). https://doi.org/10.1016/j.jece.2017.01.032
  70. D. T. Sun, L. Peng, W. S. Reeder, S. M. Moosavi, D. Tiana, D. K. Britt, E. Oveisi, and W. L. Queen, Rapid, Selective heavy metal removal from water by a metal-organic framework/polydopamine composite, ACS Cent. Sci., 4, 349-356 (2018). https://doi.org/10.1021/acscentsci.7b00605
  71. D. Lv, Y. Liu, J. Zhou, K. Yang, Z. Lou, S. A. Baig, and X. Xu, Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions, Appl. Surf. Sci., 428, 648-658 (2018). https://doi.org/10.1016/j.apsusc.2017.09.151
  72. Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. S., D. Liu1, and C. Zhong, A versatile MOF-based trap for heavy metal ion capture and dispersion, Nat. Commun., 9, 187-195 (2018). https://doi.org/10.1038/s41467-017-02600-2
  73. M. Roushani, Z. Saedi, and Y. M. Baghelani, Removal of cadmium ions from aqueous solutions using TMU-16-NH2 metal organic framework, Environ. Nanotechnol. Monit. Manag., 7, 89-96 (2017).
  74. F. Luo, J. L. Cheng, L. L. Dang, W. N. Zhou, H. L. Lin, J. Q. Li, S. J. Liu, and M. B. Luo, High-performance Hg2+ removal from ultra-low concentration aqueous solution using both acylamide and hydroxyl-functionalized metal-organic framework, J. Mater. Chem. A, 3, 9616-9620 (2015). https://doi.org/10.1039/C5TA01669J
  75. L. Esrafili, M. Gharib, and A. Morsali, The targeted design of dual-functional metal-organic frameworks (DF-MOFs) as highly efficient adsorbents for Hg2+ ions: synthesis for purpose, Dalton Trans., 48, 17831-17839 (2019). https://doi.org/10.1039/c9dt03933c
  76. N. Yin, K. Wang, Y. Xia, and Z. Li, Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb (II), Desalination, 430, 120-127 (2018). https://doi.org/10.1016/j.desal.2017.12.057
  77. F. Kazemi, H. Younesi, A. A. Ghoreyshi, N. Bahramifar, and A. Heidari, Thiol-incorporated activated carbon derived from fir wood sawdust as an efficient adsorbent for the removal of mercury ion: Batch and fixed-bed column studies, Process Saf. Environ. Prot., 100, 22-35 (2016). https://doi.org/10.1016/j.psep.2015.12.006
  78. S. Xia, Y. Huang, J. Tang, and L. Wang, Preparation of various thiol-functionalized carbon-based materials for enhanced removal of mercury from aqueous solution, Environ. Sci. Pollut. Res., 26, 8709-8720 (2019). https://doi.org/10.1007/s11356-019-04320-0
  79. T. Wajima, Carbonaceous adsorbent derived from sulfur-impregnated heavy oil ash and its lead removal ability from aqueous solution, Processes, 8, 1484 (2020). https://doi.org/10.3390/pr8111484
  80. L. F. Liang, Q. Chen, F. Jiang, D. Yuan, J. Qian, G. Lv, H. Xue, L. Liu, H.-L. Jiang, and M. Hong, In situ large-scale construction of sulfur-functionalized metalorganic framework and its efficient removal of Hg(II) from water, J. Mater. Chem. A, 4, 15370-15374 (2016). https://doi.org/10.1039/C6TA04927C
  81. S. M. Waly, A. M. El-Wakil, W. M. A. El-Maaty, and F. S. Awad, Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon, J. Saudi Chem. Soc., 25, 101296 (2021). https://doi.org/10.1016/j.jscs.2021.101296
  82. H. Xue, Q. Chen, F. Jiang, D. Yuan, G. Lv, L. Liang, L. Liu, and M. Hong, A regenerative metal-organic framework for reversible uptake of Cd(II): from effective adsorption to in situ detection, Chem. Sci., 7, 5983-5988 (2016). https://doi.org/10.1039/c6sc00972g
  83. L. Fu, S. Wang, G. Lin, L. Zhang, Q. Liu, J. Fang, C. Wei, and G. Liu, Post-functionalization of UiO-66-NH2 by 2,5-Dimercapto-1,3,4-thiadiazole for the high efficient removal of Hg(II) in water, J. Hazard. Mater., 368, 42-51 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.025
  84. K. Gupta, P. Joshi, R. Gusain, and O. P. Khatri, Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials, Coord. Chem. Rev., 445, 214100 (2021). https://doi.org/10.1016/j.ccr.2021.214100
  85. M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V. K. Garg, and M. Sillanpaa, Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution, Water Resour. Ind., 20, 54-74 (2018). https://doi.org/10.1016/j.wri.2018.10.001
  86. V. Nejadshafieea and M. R. Islamia, Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent, Mater. Sci. Eng. C, 101, 42-52 (2019). https://doi.org/10.1016/j.msec.2019.03.081
  87. K. Chen, Z. Zhang, K. Xia, X, Zhou, Y. Guo, and T. Huang, Facile synthesis of thiol-functionalized magnetic activated carbon and application for the removal of mercury(II) from aqueous solution, ACS Omega, 4, 8568-8579 (2019). https://doi.org/10.1021/acsomega.9b00572
  88. R. Ricco, K. Konstas, M. J. Styles, J. J. Richardson, R. Babarao, K. Suzuki, P. Scopecec, and P. Falcaro, Lead(II) uptake by aluminium based magnetic framework composites (MFCs) in water, J. Mater. Chem. A, 3, 19822-19831 (2015). https://doi.org/10.1039/C5TA04154F
  89. N. Wang, X.-K. Ouyang, L.-Y. Yang, and A. M. Omer, Fabrication of a magnetic cellulose nanocrystal/metal-organic framework composite for removal of Pb(II) from water, ACS Sustain. Chem. Eng., 5, 10447-10458 (2017). https://doi.org/10.1021/acssuschemeng.7b02472
  90. F. Ke, J. Jiang, Y. Li, J. Liang, X. Wan, and S. Ko, Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres, Appl. Surf. Sci., 413, 266-274 (2017). https://doi.org/10.1016/j.apsusc.2017.03.303
  91. D. C. da Silva Alves, B. Healy, L. A. de Almeida Pinto, T. R. S. Cadaval, and C. B. Breslin, Recent developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments, Molecules, 26, 594 (2021). https://doi.org/10.3390/molecules26030594
  92. S. Hydari, H. Sharififard, M. Nabavinia, and M. R. Parvizi, A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium, Chem. Eng. J., 193-194, 276-282 (2012). https://doi.org/10.1016/j.cej.2012.04.057
  93. S. Jamshidifard, S. Koushkbaghi, S. Hosseini, S. Rezaei, A. Karamipour, A. J. rad, and M. Irani, Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions, J. Hazard. Mater., 368, 10-20 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.024
  94. X.-X. Liang, N. Wang, Y.-L. Qu, L.-Y. Yang, Y.-G. Wang, and X.-K. Ouyang, Facile preparation of metal-organic framework (MIL-125)/chitosan beads for adsorption of Pb(II) from aqueous solutions, Molecules, 23, 1524 (2018). https://doi.org/10.3390/molecules23071524