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INTRODUCTION
The main pathobiology of diabetes involves the decreased 

number and dysfunction of islet cells [1,2]. Inflammatory damage 
mediated by cytokines affects insulin secretion and the survival 
of islet cells [3,4]. Abnormal activation of Nod-like receptor family 
pyrin domain containing 3 (NLRP3) induces cell pyroptosis [5].

Pyroptosis is a programmed cell death mediated by various in-
jury stimuli via inflammasome complexes. As a receptor receiv-

ing injury stimuli, NLRP3 plays an important role. The NLRP3 
inflammasome is composed of NLRP3, apoptosis-associated 
speck-like protein containing a CARD (ASC) and cysteine as-
partic acid-specific proteinase-1 (caspase-1). Activated inflam-
masomes stimulate caspase-1, which cleaves interleukin (IL)-1 
and IL-18 precursor molecules, releasing IL-1 and IL-18, which 
participate in the inflammatory response [5,6]. Gasdermin D 
(Gsdmd) protein, the direct executor of cell pyroptosis, is cleaved 
into Gsdmd-N and Gsdmd-C by activated caspases. Gsdmd-N 
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ABSTRACT As the mechanism underlying glucose metabolism regulation by oxy-
matrine is unclear, this study investigated the effects of oxymatrine on pyroptosis in 
INS-1 cells. Flow cytometry was employed to examine cell pyroptosis and reactive 
oxygen species (ROS) production. Cell pyroptosis was also investigated via transmis-
sion electron microscopy and lactate dehydrogenase (LDH) release. Protein levels 
were detected using western blotting and interleukin (IL)-1β and IL-18 secretion by 
enzyme-linked immunosorbent assay. The caspase-1 activity and DNA-binding ac-
tivity of nuclear factor kappa B (NF-κB) and nuclear factor (erythroid-derived 2)-like 
2 protein (Nrf2) were also assessed. In the high glucose and high fat-treated INS-1 
cells (HG + PA), the caspase-1 activity and LDH content, as well as Nod-like receptor 
family pyrin domain containing 3, Gsdmd-N, caspase-1, apoptosis-associated speck-
like protein containing a CARD, IL-1β, and IL-18 levels were increased. Moreover, P65 
protein levels increased in the nucleus but decreased in the cytoplasm. Oxymatrine 
attenuated these effects and suppressed high glucose and high fat-induced ROS 
production. The increased levels of nuclear Nrf2 and heme oxygenase-1 (HO-1) in the 
HG + PA cells were further elevated after oxymatrine treatment, whereas cytoplasmic 
Nrf2 and Keleh-like ECH-associated protein levels decreased. Additionally, the elevat-
ed transcriptional activity of p65 in HG + PA cells was reduced by oxymatrine, where-
as that of Nrf2 increased. The results indicate that the inhibition of pyroptosis in INS-
1 cells by oxymatrine, a key factor in its glucose metabolism regulation, involves the 
suppression of the NF-κB pathway and activation of the Nrf2/HO-1 pathway. 
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has lipophilicity and pore-forming activity, which combines cell 
membrane lipids, induces cell membrane perforation, and re-
leases inflammatory mediators [7]. 

Studies have found that high glucose, high fat, reactive oxygen 
species (ROS), and nuclear factor kappa B (NF-κB) can activate 
NLRP3 inflammasome and impair islet function [8-10]. ROS can 
damage islet β cells and inhibit insulin synthesis and secretion [11]. 
Nuclear factor (erythroid-derived 2)-like 2 protein (Nrf2) is a re-
dox-sensitive transcription factor. Activated Nrf2 regulates down-
stream gene transcription to enhance the production of proteins, 
such as NAD (P)H: quinone oxidoreductase 1, glutamate-cysteine 
ligase, heme oxygenase-1 (HO-1), and superoxide dismutase, 
which reduce ROS production and ameliorate cell function disor-
ders [12]. Nrf2 mainly mediates Keleh-like ECH-associated pro-
tein (Keap1)-Nrf2/antioxidant response element (ARE) signaling 
pathway. Under normal physiological conditions, Nrf2 is primar-
ily negatively regulated by Keap1. Nrf2 bound to Keap1 remains 
in the cytoplasm, maintaining low transcriptional activity [13]. 
Under oxidative stress, Nrf2 is released from Keap1, translocates 
to the nucleus, and binds to the ARE to activate target gene tran-
scription and produce antioxidant enzymes [14]. The number 
and activity of β cells have been found to be significantly lower in 
Nrf2 knockout mice than in wild-type mice [15]. Yagishita et al. 
[16] have also demonstrated that Nrf2 expression can inhibit ROS 
accumulation in pancreatic β cells.

Oxymatrine is the main component of a traditional Chinese 
herb, Sophora flavescens Ait. Recent studies have demonstrated 
that oxymatrine is helpful for the treatment of diabetes. In um-
bilical vein endothelial cells, oxymatrine alleviates high glucose-
induced endothelial toxicity by inhibiting ROS production 
[17,18]. Oxymatrine can reduce the levels of advanced glycation 
end products, ROS, and inflammatory cytokines in the kidney 
of diabetic rats [19]. We had previously shown that oxymatrine 
stimulated insulin secretion in isolated rat islets, increased rat in-
sulinoma (INS-1) cell vitality and cell proliferation, and inhibited 
apoptosis in INS-1 cells [20]. However, as the role of oxymatrine 
in pyroptosis in INS-1 cells is unclear, we investigated the effects 
of oxymatrine on pyroptosis in INS-1 cells as well as the NF-κB 
pathway, ROS production, and levels of Nrf2 and HO-1.

METHODS

Cell cultures

The INS-1 cell line was obtained from AiYan Biological 
technology Co., Ltd. (Shanghai, China). The cells were cul-
tured in RPMI-1640 medium (Gibco, Grand Island, NY, USA) 
supplemented with streptomycin (100 µg/ml; Sigma-Aldrich, 
St. Louis, MO, USA), penicillin (100 U/ml; Sigma-Aldrich), 
β-mercaptoethanol (50 µM; Gibco), sodium pyruvate (0.11 g/L; 
Sangon Biotech Co., Ltd., Shanghai, China), and fetal bovine se-

rum (10%; Gibco) at 37°C in a humidified atmosphere containing 
5% CO2. The INS-1 cells were treated as follows: a control group: 
no treatment; HG + PA group: high glucose (30 mM glucose [San-
gon Biotech Co., Ltd.]) + high fat (400 µM palmitic acid sodium 
[Sigma-Aldrich]); HG + PA + oxymatrine (1 µM) group: high glu-
cose (30 mM glucose) + high fat (400 µM palmitic acid sodium) 
+ oxymatrine (1 µM [Sigma-Aldrich]); HG + PA + oxymatrine 
(10 µM) group: high glucose (30 mM glucose) + high fat (400 µM 
palmitic acid sodium) + oxymatrine (10 µM). The concentrations 
of oxymatrine were based on the results of our previous work [20].

Flow cytometry analysis

The FAM-FLICA Caspase-1 Assay Kit (Immuno Chemistry 
Technologies, Bloomington, MN, USA) was employed for cell 
pyroptosis detection. The INS-1 cells were seeded in 6-well plates 
at a density of 4 × 105 cells/ml. After treatment for 24 h, the cells 
were collected, washed, and centrifuged (1,000 rpm, 5 min). The 
supernatant was discarded, and the pellets were mixed with 
FAM-FLICA caspase-1 (10 µl:290 µl) and incubated at 37°C for 
1 h. After the medium was removed by centrifugation and the 
samples washed three times with 1 × Apoptosis wash buffer, a 
working solution of propidium iodide (100 µg/ml) was added to 
the cell suspension (1 µl:100 µl). The cells were incubated at room 
temperature for 15 min and detected using a Beckman DxFLEX 
flow cytometer (Beckman Coulter, Inc., Indianapolis, IN, USA).

Reactive oxygen species assay

A Reactive Oxygen Species Assay Kit (Beyotime Biotechnology, 
Shanghai, China) was used to measure ROS production. After 
treatment for 24 h, the INS-1 cells were digested with trypsin 
without EDTA (Gibco), centrifuged (1,500 rpm, 5 min) at 4°C, 
and collected. Each sample was incubated with 1.5 ml of a work-
ing solution of dichlorodihydrofluorescein diacetate (5 µM) at 
37°C in the dark for 20 min. Subsequently, the cells were centri-
fuged (1,500 rpm, 10 min), and the staining solution was carefully 
discarded. After washing two times with phosphate-buffered 
saline (PBS), the cells were resuspended with PBS (200 µl/well). 
Beckman DxFLEX flow cytometer was used to detect the fluores-
cence signals of 10,000 cells within half an hour to obtain a curve.

Lactate dehydrogenase (LDH) release assay

The release of LDH in the supernatants was measured by using 
a commercially available LDH assay kit (Jiancheng Bioengineer-
ing Institute, Nanjing, China) according to the manufacturer’s in-
structions. The INS-1 cells were treated as follows: control; HG + PA; 
HG + PA + oxymatrine (1 µM); HG + PA + oxymatrine (10 µM). 
The cells were cultured in a 24-well plate for 24 h. The absorbance 
was determined using a multifunctional microplate reader (Ber-
thold Technologies, Bad Wildbad, Germany) at 450 nm. 
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Transmission electron microscopy (TEM) 

The INS-1 cells were treated as follows: control; HG + PA; 
HG + PA + oxymatrine (10 µM). After the cells were digested and 
centrifuged twice (1,000 rpm, 5 min, and 1,600 rpm, 5 min), the 
supernatant was removed and the cell masses collected. The sam-
ples were fixed (2.5% glutaraldehyde and 1% osmic acid), dehy-
drated (ethanol and acetone), embedded in epoxy resin, sectioned 
using a microtome to a thickness of 50 nm, and stained (uranium 
acetate and lead citrate). Finally, the specimens were observed and 
images acquired using a transmission electron microscope (TEM; 
Hitachi, Tokyo, Japan). 

Enzyme-linked immunosorbent assay (ELISA) to 
measure IL-1ββ and IL-18 secretion

IL-1β and IL-18 concentrations were measured using an IL-1β 
ELISA kit (R&D Systems, Minneapolis, MN, USA) and an IL-18 
ELISA kit (Huijia Biological Technology Co., Ltd., Xiamen, Chi-
na), respectively. The INS-1 cells were treated as follows: control; 
HG + PA; HG + PA + oxymatrine (10 µM). The cells were seeded 
in 96-well plates (5 × 103 cells/well) for 24 h. After the cells were 
digested and centrifuged (2,000 rpm, 20 min), the supernatant 
was collected, and the assay performed according to the manu-
facturer’s instructions. The optical density was determined at 450 
nm by using the multifunctional microplate reader. 

Measurement of caspase-1 activity

Caspase-1 activity was assessed by using a caspase-1 activity as-
say kit (Beyotime Biotechnology) according to the manufacturer’s 
instructions. The INS-1 cells were treated as follows: control; HG + 
PA; HG + PA + oxymatrine (10 µM). The cells were incubated 
in 96-well plates (5 × 103 cells/well) for 24 h. After the cells were 
digested and centrifuged (700 rpm, 5 min, 4°C), the supernatant 
was discarded. Subsequently, the cells were resuspended with 
pyrolysis buffer (100 µl pyrolysis buffer for 2 × 106 cells), lysed 
in an ice bath for 15 min, and centrifuged (3,800 rpm, 10 min, 
4°C). The supernatant was mixed with precooled Ac-YVAD-pNA 
(2 mM) and incubated at 37°C for 60 min. The absorbance was 
measured at a wavelength of 405 nm using the multifunctional 
microplate reader.

Western blotting 

The protein levels were analyzed by western blotting. The INS-1 
cells were treated as follows: control; HG + PA; HG + PA + oxy-
matrine (1 µM); HG + PA + oxymatrine (10 µM). The cells were 
cultured in 6-well plates (4 × 105 cells/ml) for 24 h. In brief, the 
cell lysates were electrophoresed and transferred onto polyvinyli-
dene fluoride membranes. Then, the membranes were incubated 
with the following primary antibodies (diluted in Tris-buffered 

saline with 0.1% Tween-20 [TBST] buffer): anti-NLRP3 antibody 
(ab214185, 1:1,000), anti-IL-1β antibody (ab205924, 1:1,000), anti-
NF-κB p65 antibody (ab16502, 1:2,000), anti-Nrf2 antibody 
(ab89443, 1:500), anti-HO-1 antibody (ab13243, 1:2,000), anti-
Keap1 antibody (ab119403, 1:1,000), anti-ASC antibody (ab180799, 
1:2,000), and β-actin antibody (ab8226, 1:1,000) from Abcam 
(Cambridge, UK); anti-Gsdmd antibody (93709, 1:1,000) and 
anti-Histone H3 antibody (4499, 1:2,000) from Cell Signaling 
Technology (Boston, MA, USA); and anti-caspase-1 antibody 
(NBP1-45433, 1:1,000) from Novus Biologicals (Littleton, CO, 
USA). After washing, the membranes were incubated with the 
appropriate secondary antibody (diluted in TBST buffer) from 
Abcam (1:5,000, Cambridge, UK). Image Pro Plus 6.0 software 
(Media Cybernetics, Houston, TX, USA) was used to determine 
the intensity of the protein bands. 

Luciferase reporter gene assay for DNA-binding 
activity of NF-κκB and Nrf2

A firefly luciferase reporter gene assay kit was obtained from 
Beyotime Biotechnology. The NF-κB-luc reporter plasmid and 
Nrf2-luc reporter plasmid were purchased from Genomeditech 
(Shanghai, China). The INS-1 cells were treated as follows: con-
trol; HG + PA; HG + PA + oxymatrine (10 µM). After 36‒48 h 
of co-transfection with the plasmids, the cells in each well were 
treated with 100 µl of pyrolysis buffer and centrifuged (3,700 
rpm, 3 min). Then, the supernatant was collected and mixed with 
luciferase test reagent (100 µl sample:100 µl luciferase test reagent) 
to measure the relative luciferase activity using the multifunc-
tional microplate reader. The measurement time was 10 sec and 
the interval was 2 sec. 

Statistical analysis 

The data were expressed as mean ± standard deviation (SD). 
Sigmaplot (Systat Software, San Jose, CA, USA) was used to sta-
tistical analysis. Statistical differences were tested by one-way 
analysis of variance (ANOVA) and Tukey’s test. p < 0.05 was con-
sidered significant.

RESULTS

Oxymatrine protected INS-1 cells from pyroptosis

Flow cytometry, the LDH release assay, and TEM were em-
ployed to determine the effects of oxymatrine on pyroptosis in 
INS-1 cells. As shown in Fig. 1, mitochondrial cristae and abun-
dant organelles were visible in the control cells; no mitochondrial 
swelling or vacuolar degeneration was observed. The number of 
autophagosomal vesicles was higher in the HG + PA cells, which 
also showed mitochondrial swelling, vacuolar degeneration, ir-
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regular nuclear morphology, local nuclear membrane depression, 
decreased organelles, and a large number of intracellular vacuoles 
(Fig. 1A). The HG + PA cells showed an increase in caspase-1 
activity to 18.70% ± 1.48% at 24 h (p < 0.01 vs. control, Fig. 1B, C) 
and the LDH content (p < 0.01 vs. control, Fig. 1D). Incubation of 
the HG + PA cells with oxymatrine (10 µM) decreased the num-
ber of autophagosomal vesicles in the cytoplasm (Fig. 1A) and 
caspase-1 activity (11.00% ± 1.08% at 24 h; p < 0.01 vs. HG + PA, 
Fig. 1B, C). Oxymatrine (1 µM and 10 µM) also suppressed LDH 
release (p < 0.01 vs. HG + PA, Fig. 1D).

Oxymatrine decreased the levels of NLRP3, Gsdmd-N, 
caspase-1, ASC, IL-1ββ, and IL-18 in INS-1 cells under 
high glucose and high fat conditions

After the cells were treated under different conditions, the 
levels of NLRP3, Gsdmd-N, caspase-1, ASC, and IL-1β were de-
tected by Western blotting, while IL-1β and IL-18 secretion was 
measured using ELISA. Caspase-1 activity was examined by spec-
trophotometry. The levels of NLRP3, Gsdmd-N, caspase-1, IL-1β, 
and ASC (p < 0.01 vs. control, Fig. 2A‒G), the secretion of IL-1β 
and IL-18 (p < 0.01 vs. control, Fig. 2H), and caspase-1 activity (p 
< 0.01 vs. control, Fig. 2I) were increased in HG + PA cells. As ex-
pected, treatment with oxymatrine decreased these protein levels 
(p < 0.01 vs. HG + PA, Fig. 2B–E; p < 0.05 vs. HG + PA, Fig. 2D, G), 
the secretion of IL-1β and IL-18 (p < 0.01 vs. HG + PA, Fig. 2H), 

and caspase-1 activity (p < 0.01 vs. HG + PA, Fig. 2I).

Oxymatrine inhibited high glucose and high fat-
induced ROS production in INS-1 cells

As indicated in Fig. 3, ROS production was higher in HG + PA 
cells than in the control cells (p < 0.01 vs. control). Treatment with 
oxymatrine suppressed ROS production in HG + PA cells (p < 0.05 
vs. HG + PA, Fig. 3A, B).

Oxymatrine affected NF-κκB (p65) levels in INS-1 cells 
at different times

Treatment of INS-1 cells under different conditions for 0.5 h, 1 
h, or 2 h altered NF-κB (p65) protein levels. In HG + PA cells, the 
nuclear p65 protein levels increased over time (0.5 h: 2.32 ± 0.22; 
1 h: 3.64 ± 0.32; 2 h: 3.99 ± 0.35) (p < 0.01 vs. control, Fig. 4A, B, 
D, F) but decreased after treatment with oxymatrine (0.5 h: 1.17 
± 0.14; 1 h: 1.41 ± 0.14; 2 h: 1.82 ± 0.12) (p < 0.01 vs. HG + PA, Fig. 
4A, B, D, F). Compared with the control cells, cytoplasmic p65 
protein levels of HG + PA cells decreased over time (0.5 h: 0.54 
± 0.05; 1 h: 0.40 ± 0.05; 2 h: 0.34 ± 0.03) (p < 0.01 vs. control, Fig. 
4A, C, E, G) but increased after treatment with oxymatrine (0.5 
h: 0.91 ± 0.07; 1 h: 0.77 ± 0.08; 2 h: 0.66 ± 0.06) (p < 0.01 vs. HG + 
PA, Fig. 4A, C, E, G).

Fig. 1. Oxymatrine protected INS-1 cells from pyroptosis. (A) The electron microscopic analysis of different cells. Scale bar: 2 µm; Oxymatrine: 10 
µM. (B) Representative graphics from flow cytometry analysis were showed; Oxymatrine: 10 µM. (C) The caspase-1 activity analysis of different cells; 
Oxymatrine: 10 µM. (D) The LDH release analysis of different cells. control: no treatment; HG: high glucose (30 mM glucose); PA: palmitic acid sodium 
(400 µM). Arrows: the autophagosomal vesicles. Data are presented as mean ± SD and represent an average of three experiments. LDH, lactate dehy-
drogenase. **p < 0.01 vs. control, ##p < 0.01 vs. HG + PA; the experiments were repeated three times.
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Fig. 3. Oxymatrine inhibited high glucose and high fat-induced ROS production in INS-1 cells. (A) Representative graphics of ROS production 
were showed. (B) The ROS production from different cells. control: no treatment; HG: high glucose (30 mM glucose); PA: palmitic acid sodium (400 
µM); Oxymatrine: 10 µM. Data are presented as mean ± SD and represent an average of three experiments. ROS, reactive oxygen species; DCFH-DA, 
Dichloro-dihydro-fluorescein diacetate; MFI, mean fluorescence intensity. Data are normalized to control. **p < 0.01 vs. control, #p < 0.05 vs. HG + PA; 
the experiments were repeated three times.

BA

Fig. 2. Oxymatrine decreased the levels of NLRP3, Gsdmd-N, caspase-1, ASC, IL-1ββ, and IL-18 in INS-1 cells under high glucose and high fat 
conditions. (A) Representative Western blotting bands of NLRP3, Gsdmd-N, caspase-1, and IL-1β proteins were showed. (B) Analysis of the amount of 
NLRP3 proteins. (C) Analysis of the amount of caspase-1 proteins. (D) Analysis of the amount of IL-1β proteins. (E) Analysis of the amount of Gsdmd-
N proteins. (F) Representative western blotting bands of ASC proteins were showed; Oxymatrine: 10 µM. (G) Analysis of the amount of ASC proteins; 
Oxymatrine: 10 µM. (H) Analysis of the secretion of IL-1β and IL-18; Oxymatrine: 10 µM. (I) Analysis of the activity of caspase-1; Oxymatrine: 10 µM. 
control: no treatment; HG: high glucose (30 mM glucose); PA: palmitic acid sodium (400 µM). Data are presented as mean ± SD and represent an aver-
age of three experiments. NLRP3, Nod-like receptor family pyrin domain containing 3; Gsdmd, Gasdermin D; caspase-1, cysteine aspartic acid-specific 
proteinase-1; ASC, apoptosis-associated speck-like protein containing a CARD; IL, interleukin. Data from Western blotting are normalized to control. 
**p < 0.01 vs. control, #p < 0.05, ##p < 0.01 vs. HG + PA; the experiments were repeated three times.
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Fig. 4. Oxymatrine affected NF-κκB 
(p65) levels in INS-1 cells at different 
times. (A) Representative Western blot-
ting bands of p65 proteins in the nucleus 
or cytoplasm were showed. (B) Analysis 
of the amount of p65 proteins in the 
nucleus when the cells were incubated 
for 0.5 h. (C) Analysis of the amount of 
p65 proteins in the cytoplasm when the 
cells were incubated for 0.5 h. (D) Analy-
sis of the amount of p65 proteins in the 
nucleus when the cells were incubated 
for 1 h. (E) Analysis of the amount of 
p65 proteins in the cytoplasm when the 
cells were incubated for 1 h. (F) Analysis 
of the amount of p65 proteins in the 
nucleus when the cells were incubated 
for 2 h. (G) Analysis of the amount of 
p65 proteins in the cytoplasm when the 
cells were incubated for 2 h. Control: no 
treatment; HG: high glucose (30 mM glu-
cose); PA: palmitic acid sodium (400 µM); 
Oxymatrine: 10 µM. Data are presented 
as mean ± SD and represent an average 
of three experiments. NF-κB, nuclear fac-
tor kappa B. Data are normalized to con-
trol. **p < 0.01 vs. control, ##p < 0.01 vs. 
HG + PA; the experiments were repeated 
three times.
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Oxymatrine affected Nrf2, HO-1, and Keap1 levels in 
INS-1 cells 

As shown in Fig. 5, the levels of HO-1 and nuclear Nrf2 proteins in-
creased in HG + PA cells compared with those in the control cells (p < 
0.01 vs. control, Fig. 5A, B; p < 0.05 vs. control, Fig. 5A, E). In contrast, 
levels of Keap1 and cytoplasmic Nrf2 proteins decreased in HG + PA 
cells (p < 0.01 vs. control, Fig. 5A, C, D). The treatment of HG + PA 
cells with oxymatrine increased nuclear Nrf2 and HO-1 levels (p < 0.01 
vs. HG + PA, Fig. 5A, B, E) and decreased cytoplasmic Nrf2 and Keap1 
levels (p < 0.05 vs. HG + PA, Fig. 5 A, C, D) to a greater extent.

Oxymatrine affected DNA-binding activity of NF-κκB 
(p65) and Nrf2 in INS-1 cells

The DNA-binding activity of NF-κB (p65) and Nrf2 were 
assessed in INS-1 cells after 24 h treatment under different con-
ditions. Compared with the control cells, the transcriptional 
activity of p65 and Nrf2 was activated in HG + PA cells (p < 
0.01 vs. control, Fig. 6A, B). Oxymatrine treatment inhibited the 
transcriptional activity of p65 (p < 0.05 vs. HG + PA, Fig. 6A) but 
enhanced that of Nrf2 (p < 0.01 vs. HG + PA, Fig. 6B).

DISCUSSION
Previous reports have indicated that high glucose and high 

fat concentrations can induce cell pyroptosis. Li et al. [21] have 
shown that high glucose-treated hippocampal neuronal cells un-
dergo pyroptosis in vitro in an NLRP3-dependent manner. Gu et 
al. [22] demonstrated that high glucose levels trigger pyroptosis 
in human renal glomerular endothelial cells. In high fat diet-fed 
obese mice, hypertrophic adipocytes have been found to undergo 
pyroptosis [23]. In the mouse pre-osteoblast MC3T3-E1 cell line, 
high glucose inhibits the proliferation of osteoblasts by activating 
the pyroptosis pathway [24]. Pyroptosis is also implicated in the 
high glucose-induced cell death of H9c2 cardiomyocytes, human 
ventricular cardiomyocytes, and EA.hy926 endothelial cells [25-
27]. Moreover, pyroptosis is closely related to diabetes. Type 2 
diabetic db/db mice showed high levels of NLRP3 and IL-1β [28]. 
However, after the application of an NLRP3 inhibitor, these type 2 
diabetic mice showed a decrease in NLRP3 and IL-1 β levels along 
with an amelioration of insulin resistance [28]. A 2013 report also 
confirms that type 2 diabetes mellitus (T2DM) is associated with 
the NLRP3-related inflammatory response, which is induced by 
activating the mitochondrial ROS pathway [29]. In T2DM rats, 
NLRP3 is activated by the NF-κB and thioredoxin interacting 
protein, which affects the progression of diabetic cardiomyopathy 
[25]. Pyroptosis is also commonly observed in various compli-
cations of T2DM, such as diabetic nephropathy and diabetic 

Fig. 5. Oxymatrine affected Nrf2, HO-
1, and Keap1 levels in INS-1 cells. (A) 
Representative Western blotting bands 
of Nrf2, HO-1, and Keap1 proteins in 
the nucleus or cytoplasm were showed. 
(B) Analysis of the amount of Nrf2 
proteins in the nucleus. (C) Analysis 
of the amount of Nrf2 proteins in the 
cytoplasm. (D) Analysis of the amount 
of Keap1 proteins. (E) Analysis of the 
amount of HO-1 proteins. Control: no 
treatment; HG: high glucose (30 mM 
glucose); PA: palmitic acid sodium 
(400 µM); Oxymatrine: 10 µM. Data are 
presented as mean ± SD and represent 
an average of three experiments. Nrf2, 
nuclear factor (erythroid-derived 2)-like 
2 protein; HO-1, heme oxygenase-1; 
Keap1, Keleh-like ECH-associated pro-
tein. Data are normalized to control. *p 
< 0.05 vs. control, **p < 0.01 vs. control, 
#p < 0.05 vs. HG + PA. ##p < 0.01 vs. HG 
+ PA; the experiments were repeated 
three times.
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retinopathy [30,31]. Consistent with these findings, the present 
study data showed an increase in the number of autophagosomal 
vesicles in the cytoplasm of HG + PA INS-1 cells. High glucose 
and high fat also increased LDH release, caspase-1 activity, and 
the levels of related inflammatory factors, including NLRP3, IL-
1β, IL-18, Gsdmd-N, caspase-1, and ASC, leading to pyroptosis in 
INS-1 cells. However, these changes were suppressed by oxyma-
trine treatment, demonstrating that oxymatrine can inhibit high 
glucose and high fat-induced pyroptotic cell death in INS-1 cells.

Hyperglycemia reduces the binding affinity of the NF-κB (p65) 
subunit to IκB alpha, causing increased nuclear translocation of 
p65 [32] and transcription of target genes involved in inflammatory 
responses [33]. Saturated fatty acids may also directly activate the 
toll-like-4 receptor, resulting in the activation of the downstream c-
Jun NH 2-terminal kinase and inhibitor kappa B kinase β/NF-κB 
cascade [34,35]. Lipotoxicity, glucotoxicity, and glucolipotoxicity 
induce metabolic stress, which manifests as increased oxidative 
stress and ROS production [36-38]. As mentioned above, the activa-
tion of NLRP3 is affected by the NF-κB (p65) pathway and ROS 
production. Under oxidative stress, the transcriptional activity of 
Nrf2 was increased, and Nrf2 reduced ROS production by medi-
ating the transcription and expression of a series of antioxidant 
stress proteins such as HO-1. Thus, both NF-κB and Nrf2 regulate 
NLRP3 by different mechanisms. Oxymatrine has been reported to 
regulate NF-κB pathway and Nrf2 expression. The NF-κB pathway 
is suppressed by oxymatrine in colon cancer cells and fibroblast-
like synoviocytes [39,40]. By increasing the levels of Nrf2 and HO-
1, oxymatrine reduces renal ischemia-reperfusion injury, cerebral 
ischemia-reperfusion injury, arsenic trioxide (As2O3)-affected liver 
injury, and lipopolysaccharide/D-galactosamine-induced acute liver 
failure [41-44]. Therefore, to explore the mechanism of oxymatrine-
inhibited pyroptosis in INS-1 cells, we analyzed the effects of oxy-
matrine on these factors. The results showed that high glucose and 
high fat increased the DNA-binding activity of NF-κB (p65) and 
Nrf2. Treatment with oxymatrine suppressed the transcriptional 

activity of NF-κB and reduced the entry of P65 into the nucleus. In 
contrast, oxymatrine promoted Nrf2 transcription, which increased 
HO-1 expression and reduced intracellular ROS levels. 

In summary, oxymatrine inhibits NLRP3-mediated pyroptosis 
in INS-1 cells, which may be related to its inhibition of the NF-κB 
pathway and activation of the Nrf2 pathway. These results con-
tribute to understanding the mechanism of oxymatrine-regulated 
islet cell function and provide a theoretical basis for the clinical 
application of oxymatrine for the treatment of diabetes. 
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