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Summary 
There are much processing techniques of microwave 
circuits, whose dimensions are small compared to the 
wavelength, but the disadvantage is that they cannot be 
directly applied to circuits working at high and/or low 
frequencies. In this article, we will consider the bond graph 
approach as a tool for analyzing and understanding the 
behavior of microwave circuits, and to show how basic 
circuit and network concepts can be extended to handle 
many microwaves analysis and design problems of practical 
interest. This behavior revealed in the scattering matrix 
filter, and which will be operated from its reduced bond 
graph model. So, we propose in this paper, a new 
application of bond graph approach jointly with the 
scattering bond graph for a high frequency study. 
Key words: 
Bond Graph Approach; Scattering Formalisme; 
Microwave Filter; Scattering Parameter, Network. 

1. Introduction 

 Bond graph approach [1] is a graphic language 
unified for all the fields of the engineering. It confirmed like 
a structured approach with the modeling and the simulation 
of the multi-field systems. It gives a structural analysis [2] 
and a concise description of the simple or complex linear or 
not linear systems in the shape of half arrows carrying the 
power variables couple of effort (e : often noted  in its 
reduced form) and flow (f: often noted  in its reduced 
form), of elements with simple junctions characterizing the 
nodes with effort or common flow, of elements with 
balanced junctions consisted by transformers and gyrators 
and allowing the coupling between the various under-parts 
of a physical system with a power transfer without losses, 
of the passive elements transforming the power which is 
provided to them in dissipated or stored energy.  

 Moreover, the development of bond graph 
technique was articulated around two basic concepts with 
knowing the reticulation assumption and the principle of 
power continuity [3].  

 Whereas the scattering formalism [4], which 
results in a matrix noted ‘’S’’, is the basic tool for the 

circuits and components study in microwave and in lines 
theory [5] in a biggest domain going from a very low 
frequencies to highest. It includes explicitly the 
conservation laws and respects, in an intrinsic way, the 
causal relations through its various properties [6].  

 We propose in this paper to apply this graphic 
approach jointly with the scattering formalism and we will 
consider it like a new tool and solution for the 
comprehensive and analysis of the HF circuits and network 
antennas. To understand the behavior of microwave 
systems [7] (network antennas and/or HF circuits) we will 
exploit its scattering parameters (Sij), for that, we will 
present an analytical operating procedure of these scattering 
parameters (Scattering Matrix ‘’S’’) [8]. This procedure 
will be applicate to the reduced and causal bond graph 
model of HF network filter.     

2. Generalities on the Scattering 
Formalism 

 Since the definition of the boundaries of a physical 
system is needed during its modeling, the crosslinking 
hypothesis introduced by PAYNTER [17], allows us to 
suppose that it is possible to separate and locate the 
properties of the physical object that is the given system and 
thus to define the object as a set of basic properties 
connected. 

2.1 Waves Variables in 2-Port Network 

We consider two 2-Port Network ‘’SYS1 and SYS2’’ 
interacting and communicating with each other as shown in 
Figure 1. The SYS1 and SYS2 represent two elements each 
of which has two ports through which it communicates. The 
connection between these two elements is done through a 
simple link represents interconnection that interaction. 

 

 

Fig. 1. A cascade connection of tow 2-port Networks 

Based on the assumption of the power continuity [18 ;19] 
and the concept of energy conservation which is provided 
by a flow of energy between elements, we can say that the 
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relationship linking SYS1 and SYS2 shows the same energy 
flow and can associate a common size noted P 
(instantaneous power) which is the product of two 
conjugate variables: e noted the effort and the flow f noted 
that are used in all energy fields.  

                                     P t e t f t                                      (1) 

The P power can be expressed in the following form: 

                             
12 21  P P P                                                 (2) 

Where:  

P12 : Power circulates from SYS1 to SYS2. 

P21 : Power circulates from SYS2 to SYS1. 

 Based on the assumption made by PAYNTER and 
BUSCH-Vishniac [17] can be associated to each of the two 
powers P1 and P2, a positive scalar which can be defined by 
the following expressions: 

                           
2
12

12 2

w
P                                                   (3) 

                          
2
21

21 2

w
P                                            (4) 

With: W12: The wave circulates from SYS1 to SYS2 

W21: The wave circulates from SYS2 to SYS1 

The link connecting the SYS1 and SYS2 in Figure 1 can 
be broken down for each system into two branches. Each 
branch represents either the incident Wi or the reflected Wr 
wave shown in Figure 2. 

 

 

 

Fig. 2. Scattering representation of 2-Port Network 

Wi1 and Wi2 incident waves associated with input signals. 

Wr1 and Wr2 reflected waves associated with output signals. 

The W12 and W21 waves are the vibration amplitudes of 
the corresponding waves. This concept is introduced into 
the scattering formalism [20; 21; 17]. 

If now both SYS1 and SYS2 systems are coupled, the 
assumption of the power of continuity [17;19] can give us: 

                          1 21 2i rw w w                                        (5) 

                           
1 12 2r iw w w                                 (6) 

 The universality of application of scattering 
formalism allows linking Wr and Wi waves to the usual 
variable’s effort and flow. That's why we can report that the 
power P flowing in the link connecting the two systems 
SYS1 and SYS2 is written as a product of two intrinsic 
variables noted:  (intrinsic variable: effort) and 

(intrinsic variable: flow) from the linear transformation 
developed by Breedveld [18]. 

                      
2 2
2 2 .

2 2
i rw w

P                                  (7) 

                  2 2 2 2 .
2 2

i r i rw w w w
 

   
  

  
                       (8) 

From equation 8, we can write the following linear 
transformation: 

               2 2

2 2

1 11

1 12
i i

r r

w w
H

w w




      
              

                     (9) 

 The matrix equation indicated by the equation 
below represents the passage variable effort and intrinsic 
flow ( , ) to variable wave (Wi, Wr) through an inverse 
linear transformation of the transformation ‘’H’’. 

                 1 11

1 12
i

r

w
H

w

 
 

       
              

                    (10) 

The matrix ‘’H’’ is orthogonal view that there is equality 
between this matrix and its inverse. 

2.2 Scattering Representation  

 Generally, characterization of any linear network 
can be achieved by linear-algebraic differential 
equations that interconnect the variable force and flow 
of the various pairs of ports in the network. Depending 
on the nature of the problem, these equations can be 
used in various forms since they result from the use of 
Ohm's law and Kirchhoff-constitutive relationships of 
the elements. We can define the Z impedance matrices 
and Y admittance, which according BELEVITCH [22 ; 
23] may not exist unlike representation scattering, 
arranging the complex coefficients network features in 
a table or matrix, this is done by the use of 
transformational computing and grouping of similar 
variables in a vector.  

 Considering now any linear system with n-ports 
characterized by   and   variables as shown in the 
figure below: 

  

Sy Sy
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Fig. 3. Linear System with N-Ports 

In the context of the scattering representation, the n-
ports linear system represented by Figure 3 will be 
characterized by the wave variables as shown in the 
following figure: 

 

 

 

 

 

 

 

Fig. 4. Characterization of an N-ports Network with 
wave variables 

The variables of incident waves and reflected waves 
shown in the above figure are written in the general form: 

11 12 11 1

222 2

1

nr i

r i

n nj nnrn in

S S Sw w

Sw w

S S Sw w

    
    
    
    
    
    
        

 

 

   

   

 

                (11) 

Or :  

                            r iw S w                                   (12) 

 The diagonal elements of the ‘’S’’ matrix denote 
the reflection coefficients while the non-diagonal 
elements designate the transmission coefficients. All 
these factors are called scattering parameters and are 
constituted by a linear combination of algebraic or 
differential operators [12;13;14]. 

3. Analytical Procedure Exploitation  

Either the linear system with 2N-port indicated by the 
following figure, it comprises n-ports to the input and n-
ports to the output. 

 

 

 

 

 

 

 

Fig. 5. Linear System with 2N-Ports 

As shown in the above figure, the incident and reflected 
waves at 2n-ports will be broken down into two groups: 
those entries (    , i e r ew w ) and other (    , i s r sw w ) for outputs. 

These 2n waves are bound by 2n relationships matrix 
expressing the relationship between the inputs waves and 
outputs waves through the system.   

                        

 

 

 

i e i s

r e r s

w w
W

w w

   
   

      

                                        (13) 

The W matrix may take another form as before by breaking 
down into four square matrices of order n as shown in the 
following expression: 

 

 

 

 

11 12

21 22

i e i s

r e r s

W Ww w

w w
W W

                 



  



                      (14) 

 
Whereas a succession of two simple physical systems rated 
respectively (p) and (p+1). The incident and reflected waves 

to inputs of the system ports (p) are respectively 
p

eiw )( and

p
erw )( , while 

p
siw )(  and 

p
srw )( are the incident and reflected 

waves to the output ports of the same system.  
 pW , the wave matrix can, then, be written according to 

the following relationship: 

 
 

 
 

   
 

 
 

p p

i e i sp

p p

r e r s

w w
W

w w

   
   
   
   

                                 (15) 

In the same manner and for the system (p+1) we see that 
)1(

)(
p

eiw and
)1(

)(
p

erw are respectively the incident and 

reflected waves at the ports of entries of this system while 
its incident and reflected waves at the ports outputs are 

respectively 
)1(

)(
p

siw X and 
)1(

)(
p
srw , so, we can writing the 

wave matrix  1pW  .  

 
 

 
 

   
 

 
 

1 1

1

1 1

p p

i e i sp

p p

r e r s

w w
W

w w

 



 

   
   
   
   

                              (16) 
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 Generally, the chain of m systems to input and 
output n-ports gives us a system equivalent to n-port input 
and global wave array output WT. 

                      1 2

1

m
m p

T
p

W W W W W


                      (17) 

If making a partition of S scattering matrix into four 
square matrices with ‘n’ order corresponding to the two port 
groups (inputs and outputs) we can have: 

                 

 

 

 

11 12

21 22

r e i e

r s i s

S Sw w

w w
S S

                 



  



                    (18) 

By taking into account the equation 2, we can write all 
possible combinations between the components of the 
scattering matrix and the matrix of the wave components: 

                        

12
11

22

12
22

22 11 12 21
21

22

21
22

22

1

W
S

W

S
W

W W W W
S

W

W
S

W

  





    


 

                    (19) 

And  

                         

22
11

21

12
21

21 12 22 11
21

21

11
22

21

1

S
W

S

W
S

S S S S
W

S

S
W

S

 





    


 

                   (20) 

4. Scattering Formalism Exploiting from   
Bond Graph Approach 

4.1 Reduced bond graph transformation 

 Generally the reduced bond graph model is the 
result of a certain number of transformations which consist 
in normalization, compared to a chosen normalization 
resistance, the elements with simple junction structure 
(junction 0 and junction 1), the elements with balanced 
junction (junction TF and junction GY) and the energy 
storage elements (inductance L and capacity C) and the 
dissipation (resistance R) of such kind that the variable 

effort and flows (e and f) are replaced by the noted reduced 
variables ( ,  ) [8] as the following figure indicates it. 

 

 

 

 

 

 

 

 

Fig. 6. Normalization of 2-Ports Network. 

0

1
n

R
                                                                  (21) 

The power variables defined above may be written in 
another form, considering the relationship of the 
transformer. 

0R

e
                                                (22) 

0. Rf                                              (23) 

R0 represents the standard real and positive resistance. 

4.2 Scattering parameters Exploitation  

The causality assignment to the reduced bond graph 
model of figure 6 enables us to notice that they are four 
different cases of causality assignment in input-output of 
the process [8]. For each case, there is one equation which 
connects the reduced variables effort and flows (of the entry 
and/or exit) to the other reduced variables and to the 
algebraic-graph operators Hij (i, j=1...2) associated with the 
causal ways and determined by using the Masson rule [7]. 

                         
( ) ( )

( )
( )

ij ij
i

ij

L s t
H s

s







                     (24) 

Where:  

 is the determinant of bond graph model defined by 

1 i i j i j kB B B B B B                                 (25) 

iB  : The sum of the earnings of individual loops. 

i jB B  : is the sum of the products of pairs of loops gains 

not touching, etc. 

ij  : is the reduced determinant extract from  by 

removing the loops touching the input-output causal path.  

Sub-system 
 

e 

f

Sub-system 
 

 

 

TF 
 

e 

f 
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ijL  : The transmittance of the path from j to i. 

The four cases of causality assignment are given by the 
following figures. 

 

 

 

 

Fig. 7. The flow-flow causality assignment 

 

 

 

Fig. 8. The effort-effort causality assignment 

 

 

 

 

Fig. 9. The flow-effort causality assignment 

 

 

 

 

Fig. 10. The effort-flow causality assignment 

From these different causality assignments, we can find 
these different equations. 

Table 1 Scattering matrices associated with the various cases of causality 
assignment 

 

5. Application to 2-Port Network 

5.1 Network with localized elements 

we propose to apply the previously analytical operation 
method for a high frequency filter based on localized 
elements [9] and which has 10Ghz of cut-off frequency, this 
filter is interposed between endpoints [10;11] which are 
only P1 and P2 ports as shown in the following figure. 

 
Fig. 11. 2-Port Network Filter with localized elements 

 
The causal and conventional bond graph model of this filter 
interposed between the two ports P1 and P2 is given below. 

 
 

Fig. 12. Bond graph model of the filter 

 

From this model, we can get the causal and reduced 
bond graph model indicated by the figure below, and after 
reducing its elements by performing processing by 
connecting an ideal transformer to each port of the 
constituent elements of this model [24; 25]. 

 

Fig. 13. Reduced bond graph model 

This bond graph model has a particular structure, hence 
the need for an additional step before the implementation of 
the operating procedure of scattering parameters. This step 
consists of inserting junction (0 or 1) decomposition [24; 26] 
following the bond graph model considered to break it down 
into two sub-systems without change or causality of the 
constituent elements of the system. This step we therefore 
facilitate the implementation of the operating procedure for 
the calculating of the scattering matrix. 
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Fig. 14. Reduced bond graph model with 
decomposition junction 

The breakdown of the bond graph model according to 
decomposition junction 1 give us two subsystems whose 
reduced and causal bond graph models are shown in the 
following figure: 

 

Fig. 15. The tow reduced bond graph sub-model after 
decomposition 

 

1 1Lz s   :  reduced impedance of L1 element 

2 2Lz s   : reduced impedance of L2 element 

1 1Cy s   : reduced admittance of C1 element  

2 2Cy s   : reduced admittance of C2 element                                                        
𝜏஼ଵ ൌ 𝐶ଵ ⋅ 𝑅଴ and 𝜏஼ଶ ൌ 𝐶ଶ ⋅ 𝑅଴                (26) 

1 1 0 2 2 0/  et /L LL R L R                     (27) 

 Walking through the two reduced bond graph sub-
models, we note the existence of a single causal loop model 
for every penny and whose associated integro-differential 
operator is:  

21
1

1

yz
B


  and 

22
2

1

yz
B


                          (28) 

The integro differential operators are:  

            
11

1

1
1

yz
  and 

22
2

1
1

yz
              (29) 

From the first sub-model we can write:  

                          

1
11

1 1

12
1 1

21
1 1

1
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1 1

1 1

1

1

1

1

1

1

1

1
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z y
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z y
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z y
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z y
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 


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
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 




 
 



                                 (30) 

From the second sub-model:  

                         

2
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2 2

12
2 2
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2
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2 2

2 2
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1

1

1

1

1

1

z
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z y
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y
H
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
 





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 




 
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

                                 (31) 

However, as the S matrix is not ‘’cascadable’’, we can 
determine the wave matrix for each sub-model and then 
apply it the expression of equation 7 for the overall wave 
matrix bond graph model reduces full electrical filter. 

For the first sub-model: 

  1 1 1 1 1 1 1 11

1 1 1 1 1 1 1 1

z y z y 2 z y z y1W
z y z y z y z y2

      
       

                (32) 

And for the second one:  

  2 2 2 2 2 2 2 22

2 2 2 2 2 2 2 2

z y z y 2 z y z y1W
z y z y z y z y2

      
       

                 (33) 

The total wave matrix is:  

     T 1 2 11 12

21 22

W W
W W W

W W

 
   

 

                         (34) 

From the overall wave and matrix found by referring to 
the expression of equation 18, we can determine the 
parameters of the scattering matrix as follows: 
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5.2 Simulation results and comparison study 

The simulation of the previous equations given bellow 

 
S11 parameter 

 
S12 parameter 

 
S21 parameter 

 
S22 parameter 

Fig. 16. Scattering parameters representation 
 
Validation of results is performed by the simulation of the 
electrical circuit of the digital simulation software HP-ADS 
used in microwave. 

 

 

 

 
Fig. 17. Simulation of the network filter by HP-ADS 

 
The objective of these simulations is the validation of the 
technique used to operate the scattering parameters from the 
causal bond graph model of the filter and operating in high 
frequency unlike the work of A. Kamel [15;16] where the 
concept of causality was ignored despite it represents a 
significant ownership in the network type of formalism and 
particularly the bond graph formalism. 
All simulations of figure 16 were performed under the 
Maple software to show us the shape of the reflection 
coefficient (S11 and S22) and transmission (S12 and S21) 
which, in turn, give us information concerning the type and 
order of the filter and its cutoff frequency. While the 
simulation data in figure 17 and which were carried out 
directly under the HP-ADS software to validate the 
simulations of figure 16. 

6. Conclusion 

We can say that this systematic procedure has two 
advantages; the first is the superposition of the two 
formalisms and systematic transition from one to the other 
using the concepts of causal path and causal loop. The 
second interest is the fact that this method allows to 
simultaneously study a given system with two formalisms 
that are complementary which promotes a wider 
understanding of its behavior. 
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From this section, input the body of your manuscript 
according to the constitution that you had. For detailed 
information for authors, please refer to [1]. 
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