DOI QR코드

DOI QR Code

Advanced Transverse Wave Approach for MM-Wave Analysis of Planar Antennas applied in 5G-Technology

  • Ayari, Mohamed (Faculty of Computing and Information Technology, Northern Border University -Kingdom of Saudi Arabia) ;
  • Touati, Yamen El (Faculty of Computing and Information Technology, Northern Border University -Kingdom of Saudi Arabia) ;
  • Altowaijri, Saleh (Faculty of Computing and Information Technology, Northern Border University -Kingdom of Saudi Arabia)
  • Received : 2021.12.05
  • Published : 2022.01.30

Abstract

In this paper, a fast numerical electromagnetic (EM) method based on the transverse wave formulation called-up Advanced Transverse Wave Approach (A-TWA) is presented. An appropriate 5G antenna is designed, simulated and investigated in the context of Millimeter-Wave Wireless Communication Systems. The obtained simulation results are found in good agreement with literature. Such a method can provide for the simulators a great library integrating the most complexly and sensitively geometry elements that can have a huge impact on the applications supported by new wireless technologies.

Keywords

Acknowledgement

The authors gratefully acknowledge the approval and the financial support of this research from the Deanship of Scientific Research study by the grant number 7427-CIT-2017-8-F, Northern Border University, Arar, KSA

References

  1. Nor, N. M., Jamaluddin, M. H., Kamarudin, M. R., & Khalily, M. (2016). Rectangular dielectric resonator antenna array for 28 GHz applications. Progress In lectromagnetics Research, 63, 53-61.
  2. Oskouei, H. R. D., Dastkhosh, A. R., Mirtaheri, A., & Naseh, M. (2019). A Small Cost-Effective Super Ultra-Wideband Microstrip Antenna with Variable Band-Notch Filtering and Improved Radiation Pattern with 5G/IoT Applications. Progress In Electromagnetics Research, 83, 191-202. https://doi.org/10.2528/PIERM19051802
  3. Kumar, A., & Naidu, P. V. (2016, August). A compact O-shaped printed ACS fed monopole dual-band antenna for 2.4 GHz Bluetooth and 5GHz WLAN/WiMAX applications. In 2016 Progress in electromagnetic research symposium (PIERS) (pp. 2004-2008). IEEE.
  4. Naidu, P. V., Sharma, D., Kumar, A., Rohini, R., & Sharma, P. (2018, August). Semi Circular Printed Monopole Antenna with $\mho $ Shaped Slot for UWB Applications. In 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama) (pp. 833-837). IEEE.
  5. Alsaif, H., Usman, M., Chughtai, M. T., & Nasir, J. (2018). Cross Polarized 2×2 UWB-MIMO Antenna System for 5G Wireless Applications. Progress In Electromagnetics Research, 76, 157-166. https://doi.org/10.2528/PIERM18101103
  6. Nandalal, V., Pavithra, A., Pavithra, S., & Kalaiselvi, M. (2017). Performance Measure of Ultra wide Band Antenna for Hexagonal and Rectangular Shape for Wearable Application. Asian Journal of Applied Science and Technology (AJAST), 1(3), 80-84.
  7. Abdulraheem, Y. I., Abdullah, A. S., Mohammed, H. J., Mohammed, B. A., & Abd-Alhameed, R. A. (2014). Design of radiation pattern-reconfigurable 60-GHz antenna for 5G applications.
  8. Bellofiore, S., Balanis, C. A., Foutz, J., & Spanias, A. S. (2002). Smart-antenna systems for mobile communication networks. Part 1. Overview and antenna design. IEEE Antennas and Propagation Magazine, 44(3), 145-154. https://doi.org/10.1109/MAP.2002.1039395
  9. Sharma, A., & Singh, G. (2009). Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems. Journal of Infrared, Millimeter, and Terahertz Waves, 30(1), 1. https://doi.org/10.1007/s10762-008-9416-z
  10. Gujral, M., Li, J. L. W., Yuan, T., & Qiu, C. W. (2012). Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline. Progress In Electromagnetics Research, 127, 79-92. https://doi.org/10.2528/PIER12022807
  11. Agnihotri, A., Prabhu, A., & Mishra, D. (2013). Improvement in radiation pattern of Yagi-Uda antenna. International Journal Of Engineering And Science, 2(12), 26-35.
  12. Stanley, M., Huang, Y., Wang, H., Zhou, H., Alieldin, A., & Joseph, S. (2018). A capacitive coupled patch antenna array with high gain and wide coverage for 5G smartphone applications. IEEE Access, 6, 41942-41954. https://doi.org/10.1109/access.2018.2860795
  13. Kibaroglu, K., Sayginer, M., & Rebeiz, G. M. (2018). A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a $2\times 2$ Beamformer Flip-Chip Unit Cell. IEEE Journal of Solid-State Circuits, 53(5), 1260-1274. https://doi.org/10.1109/JSSC.2018.2791481
  14. Morgado, A., Huq, K. M. S., Mumtaz, S., & Rodriguez, J. (2018). A survey of 5G technologies: Regulatory, standardization and industrial perspectives. Digital Communications and Networks, 4(2), 87-97. https://doi.org/10.1016/j.dcan.2017.09.010
  15. Elfatimi, A., Bri, S., & Saadi, A. (2018, April). Single feed compact millimeter wave antenna for future 5G applications. In 2018 International Conference on Intelligent Systems and Computer Vision (ISCV) (pp. 1-4). IEEE.
  16. Ghazaoui, Y., El Alami, A., El Ghzaoui, M., Das, S., Barad, D., & Mohapatra, S. (2020). Millimeter wave antenna with enhanced bandwidth for 5G wireless application. Journal of Instrumentation, 15(01), T01003. https://doi.org/10.1088/1748-0221/15/01/T01003
  17. Awan, W. A., Zaidi, A., Hussain, N., Khalid, S., & Baghdad, A. (2019, January). Frequency Reconfigurable patch antenna for millimeter wave applications. In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp. 1-5). IEEE.
  18. Rhee, E. (2015, July). Metal antenna for 5G mobile networks. In 2015 Seventh International Conference on Ubiquitous and Future Networks (pp. 112-114). IEEE.
  19. Nakmouche, M. F., Allam, A. M., Fawzy, D. E., & Lin, D. B. (2021). Development of a High Gain FSS Reflector Backed Monopole Antenna Using Machine Learning for 5G Applications. Progress In Electromagnetics Research M, 105, 183-194. https://doi.org/10.2528/PIERM21083103
  20. Reddy, N. K., Hazra, A., & Sukhadeve, V. (2017). A compact elliptical microstrip patch antenna for future 5G mobile wireless communication. Transactions on Engineering & Applied Sciences, 1(1), 1-4. https://doi.org/10.2495/CMEM170011
  21. Qas Elias, B. B., Soh, P. J., Abdullah Al-Hadi, A., & Vandenbosch, G. A. (2021). Design of a compact, wideband, and flexible rhombic antenna using CMA for WBAN/WLAN and 5G applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 34(5), e2841.
  22. Ayari, M., El Touati, Y., & Altowaijri, S. (2020). Method of Moments versus Advanced Transverse Wave Approach for EM Validation of Complex Microwave and RF Applications. Journal of Electromagnetic Engineering and Science, 20(1), 31-38. https://doi.org/10.26866/jees.2020.20.1.31
  23. Santos, H., Pinho, P., & Salgado, H. (2020). Patch Antenna-in-Package for 5G Communications with dual polarization and high isolation. Electronics, 9(8), 1223. https://doi.org/10.3390/electronics9081223
  24. Wu, B. Y., & Sheng, X. Q. (2018, July). Fast Characteristic Mode Analysis for Half-space Platform Antennas with Multilevel Fast Multipole Algorithm. In 2018 International Applied Computational Electromagnetics Society Symposium-China (ACES) (pp. 1-2). IEEE.
  25. Hattab, G., Visotsky, E., Cudak, M., & Ghosh, A. (2018). Toward the Coexistence of 5G MmWave Networks with Incumbent Systems beyond 70 GHz. IEEE Wireless Communications, 25(4), 18-24. https://doi.org/10.1109/mwc.2018.1700436
  26. Ayari, M., (2020). On the Use of Non-Uniform FFT for Fast and Secure Wireless Communication. International Journal of Computer Science and Network Security, 20(9), 106-113. https://doi.org/10.22937/IJCSNS.2020.20.09.13
  27. Ayari, M., Aguili, T., & Baudrand, H. (2009). More efficiency of Transverse Wave Approach (TWA) by applying Anisotropic Mesh Technique (AMT) for full-wave analysis of microwave planar structures. Progress In Electromagnetics Research, 14, 383-405. https://doi.org/10.2528/PIERB09022001
  28. Ayari, M., Aguili, T., & Baudrand, H. (2009). New version of TWA using two-dimensional non-uniform fast fourier mode transform (2d-nuffmt) for full-wave investigation of microwave integrated circuits. Progress In Electromagnetics Research, 15, 375-400. https://doi.org/10.2528/PIERB09052301
  29. Reis, P., & Virani, H. G. (2020, July). Design of a Compact Microstrip Patch Antenna of FR-4 Substrate for Wireless Applications. In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 713-716). IEEE.
  30. Saha, T. K., Goodbody, C., Karacolak, T., & Sekhar, P. K. (2019). A compact monopole antenna for ultra-wideband applications. Microwave and Optical Technology Letters, 61(1), 182-186. https://doi.org/10.1002/mop.31519