DOI QR코드

DOI QR Code

Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression

  • Wang, Guoli (College of Pharmacy, Jinan University) ;
  • An, Tianyue (College of Pharmacy, Jinan University) ;
  • Lei, Cong (College of Pharmacy, Jinan University) ;
  • Zhu, Xiaofeng (College of Traditional Chinese Medicine, Jinan University) ;
  • Yang, Li (College of Pharmacy, Jinan University) ;
  • Zhang, Lianxue (College of Chinese Medicinal Materials, Jilin Agricultural University) ;
  • Zhang, Ronghua (College of Pharmacy, Jinan University)
  • Received : 2020.11.12
  • Accepted : 2021.03.14
  • Published : 2022.05.01

Abstract

Background: Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) plays a critical role in the pathogenesis of depression by modulating synaptic structural remodeling and functional transmission. Previously, we have demonstrated that the ginsenoside Rb1 (Rb1) presents a novel antidepressant-like effect via BDNF-TrkB signaling in the hippocampus of chronic unpredictable mild stress (CUMS)-exposed mice. However, the underlying mechanism through which Rb1 counteracts stress-induced aberrant hippocampal synaptic plasticity via BDNF-TrkB signaling remains elusive. Methods: We focused on hippocampal microRNAs (miRNAs) that could directly bind to BDNF and are regulated by Rb1 to explore the possible synaptic plasticity-dependent mechanism of Rb1, which affords protection against CUMS-induced depression-like effects. Results: Herein, we observed that brain-specific miRNA-134 (miR-134) could directly bind to BDNF 30 UTR and was markedly downregulated by Rb1 in the hippocampus of CUMS-exposed mice. Furthermore, the hippocampus-targeted miR-134 overexpression substantially blocked the antidepressant-like effects of Rb1 during behavioral tests, attenuating the effects on neuronal nuclei-immunoreactive neurons, the density of dendritic spines, synaptic ultrastructure, long-term potentiation, and expression of synapse-associated proteins and BDNF-TrkB signaling proteins in the hippocampus of CUMS-exposed mice. Conclusion: These data provide strong evidence that Rb1 rescued CUMS-induced depression-like effects by modulating hippocampal synaptic plasticity via the miR-134-mediated BDNF signaling pathway.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (81903820), and National Key R&D Program of China (2018YFC2002500).

References

  1. Cui W, Ning Y, Hong W, Wang J, Liu Z, Li MD. Crosstalk between inflammation and glutamate system in depression: signaling pathway and molecular biomarkers for ketamine's antidepressant effect. Mol Neurobiol 2018;56:3484-500. https://doi.org/10.1007/s12035-018-1306-3
  2. Levy MJF, Fabien B, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 2018;235:2195-220. https://doi.org/10.1007/s00213-018-4950-4
  3. Afifi S, Fadel W, Morad H, Eldod A, Gad E, Arfken CL, Samra A, Boutros N. Neuroendocrinal study of depression in male epileptic patients. J Neuropsychiatry Clin Neuro 2011;23:163-7. https://doi.org/10.1176/appi.neuropsych.23.2.163
  4. Marsden WN. Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog Neuropsychopharmacol Biol Psychiatry 2013;43:168-84. https://doi.org/10.1016/j.pnpbp.2012.12.012
  5. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 2016;22:238-49. https://doi.org/10.1038/nm.4050
  6. Nawa H, Carnahan J, Gall C. BDNF protein measured by a novel enzyme immunoassay in normal brain and after seizure: partial disagreement with mRNA levels. Eur J Neurosci 1995;7:1527-35. https://doi.org/10.1111/j.1460-9568.1995.tb01148.x
  7. Lu B. BDNF and activity-dependent synaptic modulation. Learn Mem 2003;10:86-98. https://doi.org/10.1101/lm.54603
  8. Bjorkholm C, Monteggia LM. BDNF-a key transducer of antidepressant effects. Neuropharmacology 2016;102:72-9. https://doi.org/10.1016/j.neuropharm.2015.10.034
  9. Madara JC, Levine ES. Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission. J Neurophysiol 2008;100:3175-84. https://doi.org/10.1152/jn.90880.2008
  10. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 2013;14:7-23. https://doi.org/10.1038/nrn3379
  11. Luikart BW, Zhang W, Wayman GA, Kwon CH, Westbrook GL, Parada LF. Neurotrophin-dependent dendritic filopodial motility: a convergence on PI3K signaling. J Neurosci 2008;28:7006-12. https://doi.org/10.1523/JNEUROSCI.0195-08.2008
  12. Alonso M, Medina JH, Pozzomiller L. ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem 2004;11:172-8. https://doi.org/10.1101/lm.67804
  13. Bito H, Takemoto-Kimura S. Ca2+/CREB/CBPedependent gene regulation: a shared mechanism critical in long-term synaptic plasticity and neuronal survival. Cell Calcium 2003;34:425-30. https://doi.org/10.1016/S0143-4160(03)00140-4
  14. Tomassoni-Ardori F, Fulgenzi G, Becker J, Barrick C, Palko ME, Kuhn S, Koparde V, Cam M, Yanpallewar S, Oberdoerffer S, et al. RbFox1 up-regulation impairs BDNF-dependent hippocampal LTP by dysregulating TrkB isoform expression levels. eLife 2019;8:e49673. https://doi.org/10.7554/elife.49673
  15. Levine ES, Dreyfus CF, Black IB, Plummer MR. Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc Natl Acad Sci USA 1995;92:8074-7. https://doi.org/10.1073/pnas.92.17.8074
  16. Caldeira MV, Melo CV, Pereira DB, Carvalho R, Correia SS, Backos DS, Carvalho AL, Esteban JA, Duarte CB. Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 2007;282:12619-28. https://doi.org/10.1074/jbc.M700607200
  17. Fahimi A, Baktir MA, Moghadam S, Mojabi FS, Sumanth K, McNerney MW, Ponnusamy R, Salehi A. Physical exercise induces structural alterations in the hippocampal astrocytes: exploring the role of BDNFeTrkB signaling. Brain Struct Funct 2017;222:1797-808. https://doi.org/10.1007/s00429-016-1308-8
  18. Wang GL, He ZM, Zhu HY, Gao YG, Zhao Y, Yang H, Zhang LX. Involvement of serotonergic, noradrenergic and dopaminergic systems in the antidepressant-like effect of ginsengoside Rb1, a major active ingredient of Panax ginseng C. A. Meyer. J Ethnopharmacol 2017;204:118-24. https://doi.org/10.1016/j.jep.2017.04.009
  19. Wang GL, Wang YP, Zheng JY, Zhang LX. Monoaminergic and aminoacidergic receptors are involved in the antidepressant-like effect of ginsenoside Rb1 in mouse hippocampus (CA3) and prefrontal cortex. Brain Res 2018;1699:44-53. https://doi.org/10.1016/j.brainres.2018.05.035
  20. Wang GL, Lei C, Tian Y, Wang YP, Zhang LX, Zhang RH. Rb1, the primary active ingredient in Panax ginseng C.A. Meyer, exerts antidepressant-like effects via the BDNFeTrkBeCREB pathway. Front Pharmacol 2019;10:1034. https://doi.org/10.3389/fphar.2019.01034
  21. Shen H, Li Z. miRNAs in NMDA receptor-dependent synaptic plasticity and psychiatric disorders. Clin Sci 2016;130:1137-46. https://doi.org/10.1042/CS20160046
  22. Ma K, Zhang H, Wei G, Dong Z, Zhao H, Han X, Song X, Zhang H, Zong X, Baloch Z, et al. Identification of key genes, pathways, and miRNA/mRNA regulatory networks of CUMSeinduced depression in nucleus accumbens by integrated bioinformatics analysis. Neuropsychiatr Dis Treat 2019;15:685-700. https://doi.org/10.2147/NDT.S200264
  23. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacol 1987;93:358-64. https://doi.org/10.1007/BF00187257
  24. Egawa J, Zemljic-Harpf A, Mandyam CD, Niesman IR, Lysenko LV, Kleschevnikov AM, Roth DM, Patel HH, Patel PM, Head BP. Neuron-targeted caveolin-1 promotes ultrastructural and functional hippocampal synaptic plasticity. Cereb Cortex 2018;28:3255-66. https://doi.org/10.1093/cercor/bhx196
  25. Porsalt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn 1977;229:327-36.
  26. Li XL, Yuan YG, Xu H, Wu D, Gong WG, Geng LY, Wu FF, Tang H, Xu L, Zhang ZJ. Changed synaptic plasticity in neural circuits of depressive-like and escitaloprametreated rats. Int J Neuropsychopharmacol 2015;18:1-12.
  27. Egawa J, Zemljic-Harpf A, Mandyam CD, Niesman IR, Lysenko LV, Kleschevnikov AM, Roth DM, Patel HH, Patel PM, Head BP. Neuron-targeted caveolin-1 promotes ultrastructural and functional hippocampal synaptic plasticity. Cereb Cortex 2018;28:3255-66. https://doi.org/10.1093/cercor/bhx196
  28. Varendi K, Kumar A, Harma MA, Andressoo JO. miR-1, miR-10b, miR-155, and miR-191 are novel regulators of BDNF. Cell Mol Life Sci 2014;71:4443-56. https://doi.org/10.1007/s00018-014-1628-x
  29. Varendi K, Martlik K, Andressoo JO. From microRNA target validation to therapy: lessons learned from studies on BDNF. Cell Mol Life Sci 2015;72:1779-94. https://doi.org/10.1007/s00018-015-1836-z
  30. Wang Z, Yang P, Qi Y. Role of microRNA-134 in the neuroprotective effects of propofol against oxygen-glucose deprivation and related mechanisms. Int J Clin Exp Med 2015;8:20617.
  31. Cattaneo A, Cattane N, Begni V, Pariante CM, Riva MA. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl. Psychiatry 2016;6:e958. https://doi.org/10.1038/tp.2016.214
  32. Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D. MicroRNA-30a-5p in the prefrontal cortex controls the transition from moderate to excessive alcohol consumption. Mol Psychiatry 2014;20:1219-31.
  33. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, Lepack A, Majik MS, Jeong LS, Banasr M, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 2012;18:1413-7. https://doi.org/10.1038/nm.2886
  34. Chai H, Liu B, Zhan H, Li X, He Z, Ye J, Guo Q, Chen J, Zhang J, Li S. Antidepressant effects of rhodomyrtone in mice with chronic unpredictable mild stresseinduced depression. Int J Neuropsychopharmacol 2018;22:157-64. https://doi.org/10.1093/ijnp/pyy091
  35. Yau SY, Li A, Zhang ED, Christie BR, Xu A, Lee TM, So KF. Sustained running in rats administered corticosterone prevents the development of depressive behaviors and enhances hippocampal neurogenesis and synaptic plasticity without increasing neurotrophic factor levels. Cell Transplant 2014;23:481-92. https://doi.org/10.3727/096368914X678490
  36. Yong Z, Yan L, Gao X, Gong Z, Su R. Effects of thienorphine on synaptic structure and synaptophysin expression in the rat nucleus accumbens. Neuroscience 2014;274:53-8. https://doi.org/10.1016/j.neuroscience.2014.05.026
  37. Fan CQ, Zhu XZ, Song QQ, Wang P, Liu Z, Yu SY. MiR-134 modulates chronic stresseinduced structural plasticity and depression-like behaviors via downregulation of Limk1/cofilin signaling in rats. Neuropharmacology 2018;131:364-76. https://doi.org/10.1016/j.neuropharm.2018.01.009
  38. Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010;466:1105-9. https://doi.org/10.1038/nature09271
  39. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME. A brain-specific microRNA regulates dendritic spine development. Nature 2006;439:283-9. https://doi.org/10.1038/nature04367
  40. Morinobu S. Physiopathological mechanism of depression in relation to neurotrophic and growth factors and synaptic plasticity. Psychiatria et neurologia Japonica 2009;111:687-91.
  41. Keralapurath MM, Clark JK, Hammond S, Wagner JJ. Cocaine- or stresseinduced metaplasticity of LTP in the dorsal and ventral hippocampus. Hippocampus 2014;24:577-90. https://doi.org/10.1002/hipo.22250
  42. Cao J, Chen N, Xu TL, Xu L. Stress-facilitated LTD induces output plasticity through a synchronized-spikes and spontaneous unitary discharges the CA1 region of the hippocampus. Neurosci Res 2004;49:229-39. https://doi.org/10.1016/j.neures.2004.03.001
  43. Luo Y, Vallano ML. Arachidonic acid, but not sodium nitroprusside, stimulates presynaptic protein kinase C and phosphorylation of GAP-43 in rat hippocampal slices and synaptosomes. J Neurochem 2010;64:1808-18. https://doi.org/10.1046/j.1471-4159.1995.64041808.x
  44. Dmitry T. The distribution of synaptic strengths and possible mechanism for synaptic plasticity arise in the model of inter-spine molecular transport of PSD-95 molecules. J Neurophysiol 1999;82:1097-113. https://doi.org/10.1152/jn.1999.82.3.1097
  45. Soderling TR. Modulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Neurochem Int 1996;28:359-61. https://doi.org/10.1016/0197-0186(95)00098-4
  46. Jang SS, Royston SE, Xu J, Cavaretta JP, Vest MO, Lee KY, Lee S, Jeong HG, Lombroso PJ, Chung HJ. Regulation of STEP61 and tyrosine-phosphorylation of NMDA and AMPA receptors during homeostatic synaptic plasticity. Mol Brain 2015;8:55. https://doi.org/10.1186/s13041-015-0148-4
  47. Zhu YB, Jia GL, Wang JW, Ye XY, Lu JH, Chen JL, Zhang MB, Xie CS, Shen YJ, Tao YX, et al. Activation of CaMKII and GluR1 by the PSD-95-GluN2B coupling-dependent phosphorylation of GluN2B in the spinal cord in a rat model of type-2 diabetic neuropathic pain. J Neuropathol Exp Neurol 2020;79:800-8. https://doi.org/10.1093/jnen/nlaa035
  48. Zhou XJ, Chen ZY, Yun WW, Ren J, Li C, Wang H. Extrasynaptic NMDA receptor in excitotoxicity: function revisited. Neuroscientist 2014;21:337-44. https://doi.org/10.1177/1073858414548724
  49. Rachael I, Heather K, Stafford L, Jane DE, Bortolotto ZA, Collingridge GL, Lodge D, Volianskis A. Some distorted thoughts about ketamine as a psychedelic and a novel hypothesis based on NMDA receptor-mediated synaptic plasticity. Neuropharmacol 2018;142:30-40. https://doi.org/10.1016/j.neuropharm.2018.06.008
  50. Li SX, Han Y, Xu LZ, Yuan K, Zhang RX, Sun CY, Xu DF, Yuan M, Deng JH, Meng SQ, et al. Uncoupling DAPK1 from NMDA receptor GluN2B subunit exerts rapid antidepressant-like effects. Mol Psychiatry 2018;23:597-608. https://doi.org/10.1038/mp.2017.85
  51. Aceto G, Colussi C, Leone L, Fusco S, Rinaudo M, Scala F, Green TA, Laezza F, D'Ascenzo M, Grassi C. Chronic mild stress alters synaptic plasticity in the nucleus accumbens through GSK3β-depende nt modulation of Kv4.2 channels. Proc Natl Acad Sci USA 2020;117:1-11. https://doi.org/10.1073/iti0120117
  52. Chiu CH, Chyau CC, Chen CC, Lee LY, Chen WP, Liu JL, Lin WH, Mong MC. Erinacine a-enriched hericium erinaceus mycelium produces antidepressant-like effects through modulating BDNF/PI3K/Akt/GSK-3β signaling in mice. Int J Mol Sci 2018;19:341. https://doi.org/10.3390/ijms19020341
  53. Filippo C, Elisa G, Marco C, Failla M, Rosa CL, Crimi N, Sortino MA, Nicoletti F, Copani A, Vancheri C. TGF-β1 targets the GSK-3β/β-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res 2008;57:274-82. https://doi.org/10.1016/j.phrs.2008.02.001
  54. Garza JC, Guo M, Zhang W, Lu XY. Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoideinduced inhibition of GSK-3β/β-catenin signaling. Mol Psychiatry 2012;17:790-808. https://doi.org/10.1038/mp.2011.161