DOI QR코드

DOI QR Code

Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers

  • Tammam, Yosra (Civil Engineering Department, Istanbul Gelisim University) ;
  • Uysal, Mucteba (Civil Engineering Department, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus) ;
  • Canpolat, Orhan (Civil Engineering Department, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus)
  • Received : 2021.08.04
  • Accepted : 2022.05.02
  • Published : 2022.05.25

Abstract

Geopolymers are an important alternative material supporting recycling, sustainability, and waste management. Durability properties are among the most critical parameters to be investigated; in this study, the durability of manufactured geopolymer samples under the attack of 10% magnesium sulfate and 10% sodium sulfate solution was investigated. 180 cycles of freezing and thawing were also tested. The experimentally obtained results investigate the durability of geopolymer mortar prepared with fly ash (class F) and alkali activator. Three different quarry dust wastes replaced the river sand aggregate: limestone, marble, and basalt powder as fine filler aggregate in three different replacement ratios of 25%, 50%, and 75% to produce ten series of geopolymer composites. The geopolymer samples' visual appearance, weight changes, UPV, and strength properties were studied for up to 12 months at different time intervals of exposure to sulfate solutions to investigate sulfate resistance. In addition, Scanning Electron Microscopy (SEM), EDS, and XRD were used to study the microstructure of the samples. It was beneficial to include quarry waste as a filler aggregate in durability and mechanical properties. The compact matrix was demonstrated by microstructural analysis of the manufactured specimens. The geopolymer mortars immersed in sodium sulfate showed less strength reduction and deterioration than magnesium sulfate, indicating that magnesium sulfate is more aggressive than sodium sulfate. Therefore, it is concluded that using waste dust interrogation with partial replacement of river sand with fly ash-based geopolymers has satisfactory results in terms of durability properties of freeze-thaw and sulfate resistance.

Keywords

References

  1. Abora, K., Belena, I., Bernal, S.A., Dunster, A., Nixon, P.A., Provis, J.L., Tagnit-Hamou, A. and Winnefeld, F. (2014), "Durability and testing-Chemical matrix degradation processes", Alkali Activated Mater., 177-221. https://doi.org/10.1007/978-94-007-7672-2_8.
  2. Allahverdi, A., Abadi, M.M.B.R., Anwar Hossain, K.M. and Lachemi, M. (2014), "Resistance of chemically-activated high phosphorous slag content cement against freeze-thaw cycles", Cold Regions Sci. Tech., 103, 107-114. https://doi.org/10.1016/j.coldregions.2014.03.012.
  3. Aye, T. and Oguchi, C.T. (2011), "Resistance of plain and blended cement mortars exposed to severe sulfate attacks", Constr. Build. Mater., 25(6), 2988-2996. https://doi.org/10.1016/j.conbuildmat.2010.11.106.
  4. Bakharev, T. (2005), "Durability of geopolymer materials in sodium and magnesium sulfate solutions", Cement Concrete Res., 35(6), 1233-1246. https://doi.org/10.1016/j.cemconres.2004.09.002.
  5. Basheer, L., Kropp, J. and Cleland, D.J. (2001), "Assessment of the durability of concrete from its permeation properties: A review", Constr. Build. Mater., 15(2), 93-103. https://doi.org/10.1016/S0950-0618(00)00058-1.
  6. Bernal Susan, A., Mejia de Gutierrez, R. and Provis, J.L. (2012), "Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends", Constr. Build. Mater., 33, 99-108. https://doi.org/10.1016/j.conbuildmat.2012.01.017.
  7. Bernal, S.A, Herfort, D. and Skibsted, J. (2011), "Hybrid binders based on alkali sulfate-activated Portland clinker and metakaolin", XIII ICCC International Congress on the Chemistry of Cement, Madrid.
  8. Bonen, D. and Cohen, M.D. (1992), "Magnesium sulfate attack on Portland cement paste-I. Microstructural analysis", Cement Concrete Res., 22(1), 169-180. https://doi.org/10.1016/0008-8846(92)90147-N.
  9. Brough, A.R. and Atkinson, A. (2002), "Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure", Cement Concrete Res., 32(6), 865-879. https://doi.org/10.1016/S0008-8846(02)00717-2.
  10. Cai, L., Wang, H. and Fu, Y. (2013), "Freeze-thaw resistance of alkali-slag concrete based on response surface methodology", Constr. Build. Mater., 49, 70-76. https://doi.org/10.1016/j.conbuildmat.2013.07.045.
  11. Celik, T. and Marar, K. (1996), "Effects of crushed stone dust on some properties of concrete", Cement Concrete Res., 26(7), 1121-1130. https://doi.org/10.1016/0008-8846(96)00078-6.
  12. Chang, F.C., Lee, M.Y., Lo, S.L. and Lin, J.D. (2010), "Artificial aggregate made from waste stone sludge and waste silt", J. Envir. Manag., 91(11), 2289-2294. https://doi.org/10.1016/j.jenvman.2010.06.011.
  13. Chotetanorm, C., Chindaprasirt, P., Sata, V., Rukzon, S. and Sathonsaowaphak, A. (2013), "High-calcium bottom ash geopolymer: Sorptivity, pore size, and resistance to sodium sulfate attack", J. Mater. Civil Eng., 25, 105-111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000560.
  14. Davidovits, J. (1989), "Geopolymers and geopolymeric materials", J. Therm. Analy. Calorimetry, 35(2), 429-441. https://doi.org/10.1007/BF01904446.
  15. Degirmenci, F.N. (2018), "Freeze-Thaw and fire resistance of geopolymer mortar based on natural and waste pozzolans".
  16. Douglas, E., Bilodeau, A., Brandstetr, J. and Malhotra, V.M. (1991), "Alkali activated ground granulated blast-furnace slag concrete: Preliminary investigation", Cement Concrete Res., 21(1), 101-108. https://doi.org/10.1016/0008-8846(91)90036-h.
  17. Duxson, P, Mallicoat, S.W., Lukey, G.C., Kriven, W.M. and van Deventer, J.S.J. (2007), "The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers", Colloids Surfaces A: Physicochem. Eng. Aspects, 292(1), 8-20. https://doi.org/10.1016/j.colsurfa.2006.05.044.
  18. Duxson, Peter, Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M. and van Deventer, J.S.J. (2005), "Understanding the relationship between geopolymer composition, microstructure and mechanical properties", Colloids Surfaces A: Physicochem. Eng. Aspects, 269(1), 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060.
  19. Dzunuzovic, N., Komljenovic, M., Nikolic, V. and Ivanovic, T. (2017), "External sulfate attack on alkali-activated fly ash-blast furnace slag composite", Constr. Build. Mater., 157, 737-747. https://doi.org/10.1016/j.conbuildmat.2017.09.159.
  20. Elyamany, H.E., Abd Elmoaty, A.E.M. and Elshaboury, A.M. (2018), "Magnesium sulfate resistance of geopolymer mortar", Constr. Build. Mater., 184, 111-127. https://doi.org/10.1016/j.conbuildmat.2018.06.212.
  21. Ephraim, M. and E.O, R.L. (2015), "Elasticity and durability of concrete made with quarry rock dust and washed 10 mm gravel as aggregates", Am. J. Eng. Tech. Soc., 2, 52-59.
  22. Fernandez-Jimenez, A., Palomo, J.G. and Puertas, F. (1999), "Alkali-activated slag mortars: Mechanical strength behaviour", Cement Concrete Res., 29(8), 1313-1321. https://doi.org/10.1016/S0008-8846(99)00154-4.
  23. Ferraris, C.F., Clifton, J.R., Stutzman, P.E. and Garboczi, E.J. (1997), "Mechanisms of degradation of Portland cement-based systems by sulfate attack", Mech. Chem. Degrad. Cement Based Syst., 1997, 185-192.
  24. Fu, Y., Cai, L. and Yonggen, W. (2011), "Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete", Constr. Build. Mater., 25(7), 3144-3148. https://doi.org/10.1016/j.conbuildmat.2010.12.006.
  25. Galetakis, M. and Raka, S. (2004), "Utilization of limestone dust for artificial stone production: An experimental approach", Min. Eng., 17, 355-357. https://doi.org/10.1016/j.mineng.2003.10.031.
  26. Gorhan, G., Aslaner, R. and Sinik, O. (2016), "The effect of curing on the properties of metakaolin and fly ash-based geopolymer paste", Compos. B Eng., 97, 329-335. https://doi.org/10.1016/j.compositesb.2016.05.019.
  27. He, P., Wang, M., Fu, S., Jia, D., Yan, S., Yuan, J., Xu, J., Wang, P. and Zhou, Y. (2016), "Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer", Ceram. Int., 42(13), 14416-14422. https://doi.org/10.1016/j.ceramint.2016.06.033.
  28. Hill, A.R., Dawson, A.R. and Mundy, M. (2001), "Utilisation of aggregate materials in road construction and bulk fill", Res Conserv. Recycl., 32(3), 305-320. https://doi.org/10.1016/S0921-3449(01)00067-2.
  29. Ismail, I., Bernal, S.A., Provis, J.L., Hamdan, S. and van Deventer, J.S.J. (2013), "Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure", Mater. Struct., 46(3), 361-373. https://doi.org/10.1617/s11527-012-9906-2.
  30. Joseph, B. and Mathew, G. (2012), "Influence of aggregate content on the behavior of fly ash based geopolymer concrete", Scientia Iranica, 19(5), 1188-1194. https://doi.org/10.1016/j.scient.2012.07.006.
  31. Kapgate, S. S. and Satone, S. R. (2013), "Effect of quarry dust as partial replacement of sand in concrete", Ind. Streams Res. J., 3(5), 1-8.
  32. Krivenko, P. V (1999), "Alkaline cements: structure, properties, aspects of durability", Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Oranta, 3-43.
  33. Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Mastali, M., Kinnunen, P. and Illikainen, M. (2019), "Alkali-activated soapstone waste-Mechanical properties, durability, and economic prospects", Sustain. Mater. Tech., 22, e00118. https://doi.org/10.1016/j.susmat.2019.e00118.
  34. Madlool, N.A., Saidur, R., Hossain, M.S. and Rahim, N.A. (2011), "A critical review on energy use and savings in the cement industries", Renew. Sustain. Ener. Rev., 15(4), 2042-2060. https://doi.org/10.1016/j.rser.2011.01.005.
  35. Maslehuddin, M., Al-Mehthel, M., Alidi, S.H., Shameem, M. and Ibrahim, M. (2010), "Effect of dust in coarse aggregates on reinforcement corrosion in concrete", Constr. Build. Mater., 24(3), 326-331. https://doi.org/10.1016/j.conbuildmat.2009.08.030.
  36. Neupane, K., Chalmers, D. and Kidd, P. (2018), "High-strength geopolymer concrete-properties, advantages and challenges", Adv. Mater., 7(2), 15-25. https://doi.org/10.11648/j.am.20180702.11.
  37. Pacheco-Torgal, F., Abdollahnejad, Z., Camoes, A.F., Jamshidi, M. and Ding, Y. (2012), "Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?", Constr. Build. Mater., 30, 400-405. https://doi.org/10.1016/j.conbuildmat.2011.12.017.
  38. Pilehvar, S., Szczotok, A.M., Rodriguez, J.F., Valentini, L., Lanzon, M., Pamies, R. and Kjoniksen, A.L. (2019), "Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing microencapsulated phase change materials", Constr. Build. Mater., 200, 94-103. https://doi.org/10.1016/j.conbuildmat.2018.12.057.
  39. Puertas, F. and Fernandez-Jimenez, A. (2003), "Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes", Cement Concrete Compos., 25(3), 287-292. https://doi.org/10.1016/S0958-9465(02)00059-8.
  40. Puertas, F., Mejia, R., Fernandez-Jimenez, A., Delvasto, S. and Maldonado, J. (2002), "Alkaline cement mortars. Chemical resistance to sulfate and seawater attack", Materiales de Construccion, 52(267), 55-71. https://doi.org/10.3989/mc.2002.v52.i267.326.
  41. Rajamane, N.P., Nataraja, M.C., Dattatreya, J.K., Lakshmanan, N. and Sabitha, D. (2012), "Sulphate resistance and eco-friendliness of geopolymer concretes", Ind. Concrete J., 86(1), 13.
  42. Roy, D.M., Jiang, W. and Silsbee, M.R. (2000), "Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties", Cement Concrete Res., 30(12), 1879-1884. https://doi.org/10.1016/S0008-8846(00)00406-3.
  43. Ruiz-Agudo, E., Putnis, C.V, Jimenez-Lopez, C. and Rodriguez-Navarro, C. (2009), "An atomic force microscopy study of calcite dissolution in saline solutions: The role of magnesium ions", Geochimica et Cosmochimica Acta, 73(11), 3201-3217. https://doi.org/10.1016/j.gca.2009.03.016.
  44. Sagoe-Crentsil, K., Brown, T. and Taylor, A. (2013), "Drying shrinkage and creep performance of geopolymer concrete", J. Sustain. Cement-Based Mater., 2(1), 35-42. https://doi.org/10.1080/21650373.2013.764963.
  45. Sahu, A., Kumar, S. and Sachan, A.K. (2003), Crushed stone waste as fine aggregate for concrete", Ind. Concrete J., 77, 845-848.
  46. Salami, B.A., Megat Johari, M.A., Ahmad, Z.A. and Maslehuddin, M. (2017), "Durability performance of Palm Oil Fuel Ash-based Engineered Alkaline-activated Cementitious Composite (POFAEACC) mortar in sulfate environment", Constr. Build. Mater., 131, 229-244. https://doi.org/10.1016/j.conbuildmat.2016.11.048.
  47. Santhanam, M., Cohen, M.D. and Olek, J. (2003), "Mechanism of sulfate attack: a fresh look: Part 2. Proposed mechanisms", Cement Concrete Res., 33(3), 341-346. https://doi.org/10.1016/S0008-8846(02)00958-4.
  48. Scrivener, K.L. and Young, J.F. (1997), Mechanisms of Chemical Degradation of Cement-Based Systems, CRC Press.
  49. Singh, B.G.I., Gupta, M. and Bhattacharyya, S.K. (2015), "Geopolymer concrete: A review of some recent developments", Constr. Build. Mater., 85. https://doi.org/10.1016/j.conbuildmat.2015.03.036.
  50. Skvara, F., Jilek, T. and Kopecky, L. (2005), "Geopolymer materials based on fly ash", Ceram. Silikaty, 49, 195-204.
  51. Slavik, R., Bednarik, V., Vondruska, M. and Nemec, A. (2008), "Preparation of geopolymer from fluidized bed combustion bottom ash", J. Mater. Proc. Tech., 200(1), 265-270. https://doi.org/10.1016/j.jmatprotec.2007.09.008.
  52. Sukmak, P., de silva, P. and Chindaprasirt, P. (2015), "Sulfate resistance of clay-portland cement and clay high-calcium fly ash geopolymer", J. Mater. Civil Eng., 27, 4014158. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001112.
  53. Sun, P. and Wu, H.C. (2013), "Chemical and freeze-thaw resistance of fly ash-based inorganic mortars", Fuel, 111, 740-745. https://doi.org/10.1016/j.fuel.2013.04.070.
  54. Tammam, Y., Uysal, M. and Canpolat, O. (2021), "Effects of alternative ecological fillers on the mechanical, durability, and microstructure of fly ash-based geopolymer mortar", Eur. J. Envir. Civil Eng., 1-24. https://doi.org/10.1080/19648189.2021.1925157.
  55. Temuujin, J., Minjigmaa, A., Davaabal, B., Bayarzul, U., Ankhtuya, A., Jadambaa, T. and MacKenzie, K.J.D. (2014), "Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials", Ceram. Int., 40(10, Part B), 16475-16483. https://doi.org/10.1016/j.ceramint.2014.07.157.
  56. Thokchom, S.P.G. and Ghosh, S. (2010), "Performance of fly ash based geopolymer mortars in sulphate solution", J. Eng. Sci. Tech. Rev., 3(1), 36-40. https://doi.org/10.25103/jestr.031.07.
  57. Valencia Saavedra, W.G., Angulo, D.E. and Mejia de Gutierrez, R. (2016), "Fly ash slag geopolymer concrete: Resistance to sodium and magnesium sulfate attack", J. Mater. Civil Eng., 28(12), 4016148. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001618
  58. Wang, S.D. and Scrivener, K.L. (1995), "Hydration products of alkali activated slag cement", Cement Concrete Res., 25(3), 561-571. https://doi.org/10.1016/0008-8846(95)00045-E.
  59. Wongpa, J., Kiattikomol, K., Jaturapitakkul, C. and Chindaprasirt, P. (2010), "Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete", Mater. Des., 31(10), 4748-4754. https://doi.org/10.1016/j.matdes.2010.05.012.
  60. Zamanabadi, S.N., Zareei, S.A., Shoaei, P. and Ameri, F. (2019), "Ambient-cured alkali-activated slag paste incorporating micro-silica as repair material: Effects of alkali activator solution on physical and mechanical properties", Constr. Build. Mater., 229, 116911. https://doi.org/10.1016/j.conbuildmat.2019.116911.
  61. Zhang, J., Shi, C., Zhang, Z. and Ou, Z. (2017), "Durability of alkali-activated materials in aggressive environments: A review on recent studies", Constr. Build. Mater., 152, 598-613. https://doi.org/10.1016/j.conbuildmat.2017.07.027.
  62. Ziada, M., Erdem, S., Tammam, Y., Kara, S. and Lezcano, R.A. (2021), "The effect of basalt fiber on mechanical, microstructural, and high-temperature properties of fly ash-based and basalt powder waste-filled sustainable geopolymer mortar", Sustain., 13, 22. https://doi.org/10.3390/su132212610.
  63. Ziada, M., Tammam, Y. and Erdem, S. (2022a), "Research of alternative ecological waste materials used in geopolymers for sustainable built environments", Urban Sustainability and Energy Management of Cities for Improved Health and Well-Being, 159-178. https://doi.org/10.4018/978-1-6684-4030-8.ch009.
  64. Ziada, M., Tammam, Y., Erdem, S. and Lezcano, R.A. (2022b), "Investigation of the mechanical, microstructure and 3D fractal analysis of nanocalcite-modified environmentally friendly and sustainable cementitious composites", Build., 12(1), 36. https://doi.org/10.3390/buildings12010036.