References
- Abora, K., Belena, I., Bernal, S.A., Dunster, A., Nixon, P.A., Provis, J.L., Tagnit-Hamou, A. and Winnefeld, F. (2014), "Durability and testing-Chemical matrix degradation processes", Alkali Activated Mater., 177-221. https://doi.org/10.1007/978-94-007-7672-2_8.
- Allahverdi, A., Abadi, M.M.B.R., Anwar Hossain, K.M. and Lachemi, M. (2014), "Resistance of chemically-activated high phosphorous slag content cement against freeze-thaw cycles", Cold Regions Sci. Tech., 103, 107-114. https://doi.org/10.1016/j.coldregions.2014.03.012.
- Aye, T. and Oguchi, C.T. (2011), "Resistance of plain and blended cement mortars exposed to severe sulfate attacks", Constr. Build. Mater., 25(6), 2988-2996. https://doi.org/10.1016/j.conbuildmat.2010.11.106.
- Bakharev, T. (2005), "Durability of geopolymer materials in sodium and magnesium sulfate solutions", Cement Concrete Res., 35(6), 1233-1246. https://doi.org/10.1016/j.cemconres.2004.09.002.
- Basheer, L., Kropp, J. and Cleland, D.J. (2001), "Assessment of the durability of concrete from its permeation properties: A review", Constr. Build. Mater., 15(2), 93-103. https://doi.org/10.1016/S0950-0618(00)00058-1.
- Bernal Susan, A., Mejia de Gutierrez, R. and Provis, J.L. (2012), "Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends", Constr. Build. Mater., 33, 99-108. https://doi.org/10.1016/j.conbuildmat.2012.01.017.
- Bernal, S.A, Herfort, D. and Skibsted, J. (2011), "Hybrid binders based on alkali sulfate-activated Portland clinker and metakaolin", XIII ICCC International Congress on the Chemistry of Cement, Madrid.
- Bonen, D. and Cohen, M.D. (1992), "Magnesium sulfate attack on Portland cement paste-I. Microstructural analysis", Cement Concrete Res., 22(1), 169-180. https://doi.org/10.1016/0008-8846(92)90147-N.
- Brough, A.R. and Atkinson, A. (2002), "Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure", Cement Concrete Res., 32(6), 865-879. https://doi.org/10.1016/S0008-8846(02)00717-2.
- Cai, L., Wang, H. and Fu, Y. (2013), "Freeze-thaw resistance of alkali-slag concrete based on response surface methodology", Constr. Build. Mater., 49, 70-76. https://doi.org/10.1016/j.conbuildmat.2013.07.045.
- Celik, T. and Marar, K. (1996), "Effects of crushed stone dust on some properties of concrete", Cement Concrete Res., 26(7), 1121-1130. https://doi.org/10.1016/0008-8846(96)00078-6.
- Chang, F.C., Lee, M.Y., Lo, S.L. and Lin, J.D. (2010), "Artificial aggregate made from waste stone sludge and waste silt", J. Envir. Manag., 91(11), 2289-2294. https://doi.org/10.1016/j.jenvman.2010.06.011.
- Chotetanorm, C., Chindaprasirt, P., Sata, V., Rukzon, S. and Sathonsaowaphak, A. (2013), "High-calcium bottom ash geopolymer: Sorptivity, pore size, and resistance to sodium sulfate attack", J. Mater. Civil Eng., 25, 105-111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000560.
- Davidovits, J. (1989), "Geopolymers and geopolymeric materials", J. Therm. Analy. Calorimetry, 35(2), 429-441. https://doi.org/10.1007/BF01904446.
- Degirmenci, F.N. (2018), "Freeze-Thaw and fire resistance of geopolymer mortar based on natural and waste pozzolans".
- Douglas, E., Bilodeau, A., Brandstetr, J. and Malhotra, V.M. (1991), "Alkali activated ground granulated blast-furnace slag concrete: Preliminary investigation", Cement Concrete Res., 21(1), 101-108. https://doi.org/10.1016/0008-8846(91)90036-h.
- Duxson, P, Mallicoat, S.W., Lukey, G.C., Kriven, W.M. and van Deventer, J.S.J. (2007), "The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers", Colloids Surfaces A: Physicochem. Eng. Aspects, 292(1), 8-20. https://doi.org/10.1016/j.colsurfa.2006.05.044.
- Duxson, Peter, Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M. and van Deventer, J.S.J. (2005), "Understanding the relationship between geopolymer composition, microstructure and mechanical properties", Colloids Surfaces A: Physicochem. Eng. Aspects, 269(1), 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060.
- Dzunuzovic, N., Komljenovic, M., Nikolic, V. and Ivanovic, T. (2017), "External sulfate attack on alkali-activated fly ash-blast furnace slag composite", Constr. Build. Mater., 157, 737-747. https://doi.org/10.1016/j.conbuildmat.2017.09.159.
- Elyamany, H.E., Abd Elmoaty, A.E.M. and Elshaboury, A.M. (2018), "Magnesium sulfate resistance of geopolymer mortar", Constr. Build. Mater., 184, 111-127. https://doi.org/10.1016/j.conbuildmat.2018.06.212.
- Ephraim, M. and E.O, R.L. (2015), "Elasticity and durability of concrete made with quarry rock dust and washed 10 mm gravel as aggregates", Am. J. Eng. Tech. Soc., 2, 52-59.
- Fernandez-Jimenez, A., Palomo, J.G. and Puertas, F. (1999), "Alkali-activated slag mortars: Mechanical strength behaviour", Cement Concrete Res., 29(8), 1313-1321. https://doi.org/10.1016/S0008-8846(99)00154-4.
- Ferraris, C.F., Clifton, J.R., Stutzman, P.E. and Garboczi, E.J. (1997), "Mechanisms of degradation of Portland cement-based systems by sulfate attack", Mech. Chem. Degrad. Cement Based Syst., 1997, 185-192.
- Fu, Y., Cai, L. and Yonggen, W. (2011), "Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete", Constr. Build. Mater., 25(7), 3144-3148. https://doi.org/10.1016/j.conbuildmat.2010.12.006.
- Galetakis, M. and Raka, S. (2004), "Utilization of limestone dust for artificial stone production: An experimental approach", Min. Eng., 17, 355-357. https://doi.org/10.1016/j.mineng.2003.10.031.
- Gorhan, G., Aslaner, R. and Sinik, O. (2016), "The effect of curing on the properties of metakaolin and fly ash-based geopolymer paste", Compos. B Eng., 97, 329-335. https://doi.org/10.1016/j.compositesb.2016.05.019.
- He, P., Wang, M., Fu, S., Jia, D., Yan, S., Yuan, J., Xu, J., Wang, P. and Zhou, Y. (2016), "Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer", Ceram. Int., 42(13), 14416-14422. https://doi.org/10.1016/j.ceramint.2016.06.033.
- Hill, A.R., Dawson, A.R. and Mundy, M. (2001), "Utilisation of aggregate materials in road construction and bulk fill", Res Conserv. Recycl., 32(3), 305-320. https://doi.org/10.1016/S0921-3449(01)00067-2.
- Ismail, I., Bernal, S.A., Provis, J.L., Hamdan, S. and van Deventer, J.S.J. (2013), "Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure", Mater. Struct., 46(3), 361-373. https://doi.org/10.1617/s11527-012-9906-2.
- Joseph, B. and Mathew, G. (2012), "Influence of aggregate content on the behavior of fly ash based geopolymer concrete", Scientia Iranica, 19(5), 1188-1194. https://doi.org/10.1016/j.scient.2012.07.006.
- Kapgate, S. S. and Satone, S. R. (2013), "Effect of quarry dust as partial replacement of sand in concrete", Ind. Streams Res. J., 3(5), 1-8.
- Krivenko, P. V (1999), "Alkaline cements: structure, properties, aspects of durability", Proceedings of the Second International Conference on Alkaline Cements and Concretes, Kiev, Oranta, 3-43.
- Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Mastali, M., Kinnunen, P. and Illikainen, M. (2019), "Alkali-activated soapstone waste-Mechanical properties, durability, and economic prospects", Sustain. Mater. Tech., 22, e00118. https://doi.org/10.1016/j.susmat.2019.e00118.
- Madlool, N.A., Saidur, R., Hossain, M.S. and Rahim, N.A. (2011), "A critical review on energy use and savings in the cement industries", Renew. Sustain. Ener. Rev., 15(4), 2042-2060. https://doi.org/10.1016/j.rser.2011.01.005.
- Maslehuddin, M., Al-Mehthel, M., Alidi, S.H., Shameem, M. and Ibrahim, M. (2010), "Effect of dust in coarse aggregates on reinforcement corrosion in concrete", Constr. Build. Mater., 24(3), 326-331. https://doi.org/10.1016/j.conbuildmat.2009.08.030.
- Neupane, K., Chalmers, D. and Kidd, P. (2018), "High-strength geopolymer concrete-properties, advantages and challenges", Adv. Mater., 7(2), 15-25. https://doi.org/10.11648/j.am.20180702.11.
- Pacheco-Torgal, F., Abdollahnejad, Z., Camoes, A.F., Jamshidi, M. and Ding, Y. (2012), "Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?", Constr. Build. Mater., 30, 400-405. https://doi.org/10.1016/j.conbuildmat.2011.12.017.
- Pilehvar, S., Szczotok, A.M., Rodriguez, J.F., Valentini, L., Lanzon, M., Pamies, R. and Kjoniksen, A.L. (2019), "Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing microencapsulated phase change materials", Constr. Build. Mater., 200, 94-103. https://doi.org/10.1016/j.conbuildmat.2018.12.057.
- Puertas, F. and Fernandez-Jimenez, A. (2003), "Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes", Cement Concrete Compos., 25(3), 287-292. https://doi.org/10.1016/S0958-9465(02)00059-8.
- Puertas, F., Mejia, R., Fernandez-Jimenez, A., Delvasto, S. and Maldonado, J. (2002), "Alkaline cement mortars. Chemical resistance to sulfate and seawater attack", Materiales de Construccion, 52(267), 55-71. https://doi.org/10.3989/mc.2002.v52.i267.326.
- Rajamane, N.P., Nataraja, M.C., Dattatreya, J.K., Lakshmanan, N. and Sabitha, D. (2012), "Sulphate resistance and eco-friendliness of geopolymer concretes", Ind. Concrete J., 86(1), 13.
- Roy, D.M., Jiang, W. and Silsbee, M.R. (2000), "Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties", Cement Concrete Res., 30(12), 1879-1884. https://doi.org/10.1016/S0008-8846(00)00406-3.
- Ruiz-Agudo, E., Putnis, C.V, Jimenez-Lopez, C. and Rodriguez-Navarro, C. (2009), "An atomic force microscopy study of calcite dissolution in saline solutions: The role of magnesium ions", Geochimica et Cosmochimica Acta, 73(11), 3201-3217. https://doi.org/10.1016/j.gca.2009.03.016.
- Sagoe-Crentsil, K., Brown, T. and Taylor, A. (2013), "Drying shrinkage and creep performance of geopolymer concrete", J. Sustain. Cement-Based Mater., 2(1), 35-42. https://doi.org/10.1080/21650373.2013.764963.
- Sahu, A., Kumar, S. and Sachan, A.K. (2003), Crushed stone waste as fine aggregate for concrete", Ind. Concrete J., 77, 845-848.
- Salami, B.A., Megat Johari, M.A., Ahmad, Z.A. and Maslehuddin, M. (2017), "Durability performance of Palm Oil Fuel Ash-based Engineered Alkaline-activated Cementitious Composite (POFAEACC) mortar in sulfate environment", Constr. Build. Mater., 131, 229-244. https://doi.org/10.1016/j.conbuildmat.2016.11.048.
- Santhanam, M., Cohen, M.D. and Olek, J. (2003), "Mechanism of sulfate attack: a fresh look: Part 2. Proposed mechanisms", Cement Concrete Res., 33(3), 341-346. https://doi.org/10.1016/S0008-8846(02)00958-4.
- Scrivener, K.L. and Young, J.F. (1997), Mechanisms of Chemical Degradation of Cement-Based Systems, CRC Press.
- Singh, B.G.I., Gupta, M. and Bhattacharyya, S.K. (2015), "Geopolymer concrete: A review of some recent developments", Constr. Build. Mater., 85. https://doi.org/10.1016/j.conbuildmat.2015.03.036.
- Skvara, F., Jilek, T. and Kopecky, L. (2005), "Geopolymer materials based on fly ash", Ceram. Silikaty, 49, 195-204.
- Slavik, R., Bednarik, V., Vondruska, M. and Nemec, A. (2008), "Preparation of geopolymer from fluidized bed combustion bottom ash", J. Mater. Proc. Tech., 200(1), 265-270. https://doi.org/10.1016/j.jmatprotec.2007.09.008.
- Sukmak, P., de silva, P. and Chindaprasirt, P. (2015), "Sulfate resistance of clay-portland cement and clay high-calcium fly ash geopolymer", J. Mater. Civil Eng., 27, 4014158. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001112.
- Sun, P. and Wu, H.C. (2013), "Chemical and freeze-thaw resistance of fly ash-based inorganic mortars", Fuel, 111, 740-745. https://doi.org/10.1016/j.fuel.2013.04.070.
- Tammam, Y., Uysal, M. and Canpolat, O. (2021), "Effects of alternative ecological fillers on the mechanical, durability, and microstructure of fly ash-based geopolymer mortar", Eur. J. Envir. Civil Eng., 1-24. https://doi.org/10.1080/19648189.2021.1925157.
- Temuujin, J., Minjigmaa, A., Davaabal, B., Bayarzul, U., Ankhtuya, A., Jadambaa, T. and MacKenzie, K.J.D. (2014), "Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials", Ceram. Int., 40(10, Part B), 16475-16483. https://doi.org/10.1016/j.ceramint.2014.07.157.
- Thokchom, S.P.G. and Ghosh, S. (2010), "Performance of fly ash based geopolymer mortars in sulphate solution", J. Eng. Sci. Tech. Rev., 3(1), 36-40. https://doi.org/10.25103/jestr.031.07.
- Valencia Saavedra, W.G., Angulo, D.E. and Mejia de Gutierrez, R. (2016), "Fly ash slag geopolymer concrete: Resistance to sodium and magnesium sulfate attack", J. Mater. Civil Eng., 28(12), 4016148. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001618
- Wang, S.D. and Scrivener, K.L. (1995), "Hydration products of alkali activated slag cement", Cement Concrete Res., 25(3), 561-571. https://doi.org/10.1016/0008-8846(95)00045-E.
- Wongpa, J., Kiattikomol, K., Jaturapitakkul, C. and Chindaprasirt, P. (2010), "Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete", Mater. Des., 31(10), 4748-4754. https://doi.org/10.1016/j.matdes.2010.05.012.
- Zamanabadi, S.N., Zareei, S.A., Shoaei, P. and Ameri, F. (2019), "Ambient-cured alkali-activated slag paste incorporating micro-silica as repair material: Effects of alkali activator solution on physical and mechanical properties", Constr. Build. Mater., 229, 116911. https://doi.org/10.1016/j.conbuildmat.2019.116911.
- Zhang, J., Shi, C., Zhang, Z. and Ou, Z. (2017), "Durability of alkali-activated materials in aggressive environments: A review on recent studies", Constr. Build. Mater., 152, 598-613. https://doi.org/10.1016/j.conbuildmat.2017.07.027.
- Ziada, M., Erdem, S., Tammam, Y., Kara, S. and Lezcano, R.A. (2021), "The effect of basalt fiber on mechanical, microstructural, and high-temperature properties of fly ash-based and basalt powder waste-filled sustainable geopolymer mortar", Sustain., 13, 22. https://doi.org/10.3390/su132212610.
- Ziada, M., Tammam, Y. and Erdem, S. (2022a), "Research of alternative ecological waste materials used in geopolymers for sustainable built environments", Urban Sustainability and Energy Management of Cities for Improved Health and Well-Being, 159-178. https://doi.org/10.4018/978-1-6684-4030-8.ch009.
- Ziada, M., Tammam, Y., Erdem, S. and Lezcano, R.A. (2022b), "Investigation of the mechanical, microstructure and 3D fractal analysis of nanocalcite-modified environmentally friendly and sustainable cementitious composites", Build., 12(1), 36. https://doi.org/10.3390/buildings12010036.