DOI QR코드

DOI QR Code

Study on failure behaviors of mixed-mode cracks under static and dynamic loads

  • Zhou, Lei (Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Southwest University of Science and Technology) ;
  • Chen, Jianxing (Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University) ;
  • Zhou, Changlin (Chengdu Surveying Geotechnical Research Institute Co., Ltd. of MCC) ;
  • Zhu, Zheming (Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University) ;
  • Dong, Yuqing (Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University) ;
  • Wang, Hanbing (Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University)
  • Received : 2021.04.19
  • Accepted : 2022.04.27
  • Published : 2022.06.10

Abstract

In the present study, a series of physical experiments and numerical simulations were conducted to investigate the effects of mode I and mixed-mode I/II cracks on the fracture modes and stability of roadway tunnel models. The experiments and simulations incorporated different inclination angle flaws under both static and dynamic loads. The quasi-static and dynamic testing were conducted by using an electro-hydraulic servo control device and drop weight impact system (DWIS), and the failure process was simulated by using rock failure process analysis (RFPA) and AUTODYN software. The stress intensity factor was also calculated to evaluate the stability of the flawed roadway tunnel models by using ABAQUS software. According to comparisons between the test and numerical results, it is observed that for flawed roadways with a single radical crack and inclination angle of 45°, the static and dynamic stability are the lowest relative to other angles of fractured rock masses. For mixed-mode I/II cracks in flawed roadway tunnel models under dynamic loading, a wing crack is produced and the pre-existing cracks increase the stress concentration factor in the right part of the specimen, but this factor will not be larger than the maximum principal stress region in the roadway tunnel models. Additionally, damage to the sidewalls will be involved in the flawed roadway tunnel models under static loads.

Keywords

Acknowledgement

This work was financially supported by the open fund of Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province (20kfgk01); the Sichuan Science and Technology Program(2021YJ0511); the State Key Laboratory for Geo-Mechanics and Deep Underground Engineering, China University of Mining &Technology (SKLGDUEK2111); the Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province (ZJRMG-2020-01); the Major research and development project of Metallurgical Corporation of China LTD. in the non-steel field (2021-05); the Fundamental Research Funds for the Central Universities(2021SCU12130); the Sichuan University postdoctoral interdisciplinary Innovation Fund.

References

  1. Ajdani, A., Ayatollahi, M.R., Akhavan-Safar, A. and Martins da Silva, L.F. (2020), "Mixed mode fracture characterization of brittle and semi-brittle adhesives using the SCB specimen", Int. J. Adhes. Adhes., 101, 102629. https://doi.org/10.1016/j.ijadhadh.2020.102629.
  2. Aliha, M.R.M. and Ayatollahi, M.R. (2014), "Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading - A statistical approach", Theor. Appl. Fract. Mech., 69, 17-25. https://doi.org/10.1016/j.tafmec.2013.11.008.
  3. Aliha, M.R.M., Bahmani, A. and Akhondi, Sh. (2016), "Mixed mode fracture toughness testing of PMMA with different three-point bend type specimens", Eur. J. Mech. -A Solids 58, 148-162. https://doi.org/10.1016/j.euromechsol.2016.01.012.
  4. Alneasan, M., Behnia, M. and Bagherpour, R. (2019), "Analytical and numerical investigations of dynamic crack propagation in brittle rocks under mixed mode loading", Constr. Build. Mater., 222, 544-555. https://doi.org/10.1016/j.conbuildmat.2019.06.163.
  5. Dai, F., Chen, R., Iqbal, M.J. and Xia, K. (2010), "Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters", Int. J. Rock Mech. Min. Sci., 47(4), 606-613. https://doi.org/10.1016/j.ijrmms.2010.04.002.
  6. Du, S., Li, D., Yu, W., Zhang, J. and Liu, F. (2020), "Stability Analysis and Support Control for a Jointed Soft Rock Roadway Considering Different Lateral Stresses", Geotech. Geol. Eng., 38(1), 237-253. https://doi.org/10.1007/s10706-019-01013-w.
  7. Fan, Y., Zhao, Y., Zhu, Z., Zhou, L. and Dong, Y. (2017), "Stress intensity factors for a tunnel containing a radial crack under compression", Adv. Mech. Eng., 9(12), 168781401774541. https://doi.org/10.1177/1687814017745414.
  8. Fan, Y., Zhu, Z., Zhao, Y., Zhou, C. and Zhang, X. (2019), "The effects of some parameters on perforation tip initiation pressures in hydraulic fracturing", J. Pet. Sci. Eng., 176, 1053-1060. https://doi.org/10.1016/j.petrol.2019.02.028.
  9. Gregoire, D., Maigre, H. and Combescure, A. (2009), "New experimental and numerical techniques to study the arrest and the restart of a crack under impact in transparent materials", Int. J. Solids Struct., 46(18-19), 3480-3491. https://doi.org/10.1016/j.ijsolstr.2009.06.003.
  10. Haeri, H., Sarfarazi, V., Bagher Shemirani, A. and Fatehi Marji, M. (2018), "On the direct experimental measurement of mortar fracture toughness by a compression-to-tensile load transformer (CTLT)", Constr. Build. Mater., 181, 687-712. https://doi.org/10.1016/j.conbuildmat.2018.06.066.
  11. Haeri, H., Sarfarazi, V., Ebneabbasi, P., Nazari maram, A., Shahbazian, A., Fatehi Marji, M. and Mohamadi, A.R. (2020), "XFEM and experimental simulation of failure mechanism of non-persistent joints in mortar under compression", Constr. Build. Mater., 236, 117500. https://doi.org/10.1016/j.conbuildmat.2019.117500.
  12. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014), "Cracks coalescence mechanism and cracks propagation paths in rock-like specimens containing pre-existing random cracks under compression", J. Cent. South Univ., 21(6), 2404-2414. https://doi.org/10.1007/s11771-014-2194-y.
  13. Huang, X., Tang, S.B., Tang, C.A., Xie, L.M. and Tao, Z.Y. (2017), "Numerical simulation of cracking behavior in artificially designed rock models subjected to heating from a central borehole", Int. J. Rock Mech. Min. Sci., 98, 191-202. https://doi.org/10.1016/j.ijrmms.2017.07.016.
  14. Huang, Y.H., Yang, S.Q. and Tian, W.L. (2019), "Crack coalescence behavior of sandstone specimen containing two pre-existing flaws under different confining pressures", Theor. Appl. Fract. Mech., 99, 118-130. https://doi.org/10.1016/j.tafmec.2018.11.013.
  15. Jia, P. and Tang, C.A. (2008), "Numerical study on failure mechanism of tunnel in jointed rock mass", Tunn. Undergr. Sp. Tech., 23(5), 500-507. https://doi.org/10.1016/j.tust.2007.09.001.
  16. Lesiuk, G., Smolnicki, M., Mech, R., Ziety, A. and Fragassa, C. (2020), "Analysis of fatigue crack growth under mixed mode (I + II) loading conditions in rail steel using CTS specimen", Eng. Fail. Anal., 109, 104354. https://doi.org/10.1016/j.engfailanal.2019.104354.
  17. Li, D., Han, Z., Sun, X., Zhou, T. and Li, X. (2019a), "Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests", Rock Mech. Rock Eng., 52(6), 1623-1643. https://doi.org/10.1007/s00603-018-1652-5.
  18. Li, D., Han, Z., Zhu, Q., Zhang, Y. and Ranjith, P.G. (2019b), "Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles", Int. J. Rock Mech. Min., 117, 162-170. https://doi.org/10.1016/j.ijrmms.2019.03.011.
  19. Li, G., Cheng, X.F., Pu, H. and Tang, C.A. (2019c), "Damage smear method for rock failure process analysis", J. Rock Mech. Geotech. Eng., 11(6), 1151-1165. https://doi.org/10.1016/j.jrmge.2019.06.007.
  20. Li, M., Zhu, Z., Liu, R., Liu, B., Zhou, L. and Dong, Y. (2018), "Study of the effect of empty holes on propagating cracks under blasting loads", Int. J. Rock Mech. Min., 103, 186-194. https://doi.org/10.1016/j.ijrmms.2018.01.043.
  21. Liao, Z.Y., Zhu, J.B. and Tang, C.A. (2019) "Numerical investigation of rock tensile strength determined by direct tension, Brazilian and three-point bending tests", Int. J. Rock Mech. Min., 115, 21-32. https://doi.org/10.1016/j.ijrmms.2019.01.007.
  22. Mitra, E., Hazell, P.J. and Ashraf, M. (2015), "A discrete element model to predict the pressure-density relationship of blocky and angular ceramic particles under uniaxial compression", J. Mater. Sci., https://doi.org/10.1007/s10853-015-9344-y.
  23. Reddish, D.J., Stace, L.R., Vanichkobchinda, P. and Whittles, D.N. (2005), "Numerical simulation of the dynamic impact breakage testing of rock", Int. J. Rock Mech. Min., 42(2), 167-176. https://doi.org/10.1016/j.ijrmms.2004.06.004.
  24. Rege, K., Grnsund, J. and Pavlou, D.G. (2019), "Mixed-mode I and II fatigue crack growth retardation due to overload: An experimental study", Int. J. Fatigue, 129, 105227. https://doi.org/10.1016/j.ijfatigue.2019.105227.
  25. Sarfarazi, V., Haeri, H. and Fatehi, M. (2017), "Fracture Mechanism of Brazilian Discs with Multiple Parallel Notches Using PFC2D", Period. Polytech. Civ. Eng., https://doi.org/10.3311/PPci.10310.
  26. Sarfarazi, V., Haeri, H., Ebneabbasi, P., Shemirani, A.B. and Hedayat, A. (2018), "Determination of tensile strength of concrete using a novel apparatus", Constr. Build. Mater., 166, 817-832. https://doi.org/10.1016/j.conbuildmat.2018.01.157.
  27. Shi, G.H. 1992 "Discontinuous Deformation Analysis: A New Numerical Model for the Statics and Dynamics of Deformable Block Structures". Eng. Comput., https://doi.org/10.1108/eb023855.
  28. Tang, C., Tang, S., Gong, B. and Bai, H. (2015), "Discontinuous deformation and displacement analysis: From continuous to discontinuous", Sci. China-Technol. Sci., 58(9), 1567-1574. https://doi.org/10.1007/s11431-015-5899-8.
  29. Tang, S.B., Zhang, H., Tang, C.A. and Liu, H.Y. (2016), "Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock", Int. J. Solids Struct., 80, 520-531. https://doi.org/10.1016/j.ijsolstr.2015.10.012.
  30. Wang, L., Zhu, Z., Zhou, L., Gao, W., Dong, Y., Niu, C. and Ai, T. (2021), "Study the effect of circular hole on dynamic fracture properties of cracked PMMA specimen under impact loads", Int. J. Impact Eng., 156, 103948. https://doi.org/10.1016/j.ijimpeng.2021.103948.
  31. Wang, M., Zhu, Z., Dong, Y. and Zhou, L. (2017), "Study of mixed-mode I/II fractures using single cleavage semicircle compression specimens under impacting loads", Eng. Fract. Mech., 177, 33-44. https://doi.org/10.1016/j.engfracmech.2017.03.042.
  32. Wang, Q., Zhu, W., Xu, T., Niu, L. and Wei, J. (2016a), "Numerical Simulation of Rock Creep Behavior with a Damage-Based Constitutive Law", Int. J. Geomech., 17, 04016044. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000707.
  33. Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004.
  34. Wang, Q.Z., Yang, J.R., Zhang, C.G., Zhou, Y., Li, L., Wu, L.Z. and Huang, R.Q. (2016b), "Determination of dynamic crack initiation and propagation toughness of a rock using a hybrid experimental-numerical approach", J. Eng. Mech., 142(12), 1-9. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001155.
  35. Wu, F., Gao, R., Zou, Q., Chen, J., Liu, W. and Peng, K. (2020), "Long-term strength determination and nonlinear creep damage constitutive model of salt rock based on multistage creep test: Implications for underground natural gas storage in salt cavern", Energy Sci. Eng., 8(5), 1592-1603. https://doi.org/10.1002/ese3.617.
  36. Wu, Q., Weng, L., Zhao, Y., Guo, B. and Luo, T. (2019), "On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates", Eng. Geol., 253, 94-110. https://doi.org/10.1016/j.enggeo.2019.03.014.
  37. Xie, L.X., Yang, S.Q., Gu, J.C., Zhang, Q.B., Lu, W.B., Jing, H.W. and Wang, Z.L. (2019), "JHR constitutive model for rock under dynamic loads", Comput. Geotech., 108, 161-172. https://doi.org/10.1016/j.compgeo.2018.12.024.
  38. Xu, T., He, Z.J., Tang, C.A., Zhu, W.C. and Ranjith, P.G. (2015), "Finite element analysis of width effect in interface debonding of FRP plate bonded to concrete", Finite Elem. Anal. Des., 93, 30-41. https://doi.org/10.1016/j.finel.2014.08.009.
  39. Xu, Z. and Li, Y. (2012), "A novel method in determination of dynamic fracture toughness under mixed mode I/II impact loading", Int. J. Solids Struct., 49(2), 366-376. https://doi.org/10.1016/j.ijsolstr.2011.10.011.
  40. Ying, P., Zhu, Z., Zhou, L., Fan, Y., Dong, Y. and Wang, M. (2020), "Testing Method of Rock Dynamic Fracture Toughness Using Large Single Cleavage Semicircle Compression Specimens", J. Test. Eval., 48(5), 20170702. https://doi.org/10.1520/JTE20170702.
  41. Yu, L., Zhang, Z., Wu, J., Liu, R., Qin, H. and Fan, P. (2020), "Experimental study on the dynamic fracture mechanical properties of limestone after chemical corrosion", Theor. Appl. Fract. Mech., 108, 102620. https://doi.org/10.1016/j.tafmec.2020.102620.
  42. Zhou, L., Zhu, Z., Dong, Y. and Niu, C. (2020), "Investigation of dynamic fracture properties of multi-crack tunnel samples under impact loads", Theor. Appl. Fract. Mech., 109, 102733. https://doi.org/10.1016/j.tafmec.2020.102733.
  43. Zhou, L., Zhu, Z., Liu, B. and Fan, Y. (2018a), "The effect of radial cracks on tunnel stability", Geomech. Eng., 15(2), 721-728. https://doi.org/10.12989/gae.2018.15.2.721.
  44. Zhou, L., Zhu, Z., Qiu, H., Zhang, X. and Lang, L. (2018b), "Study of the effect of loading rates on crack propagation velocity and rock fracture toughness using cracked tunnel specimens", Int. J. Rock Mech. Min. Sci., 112, 25-34. https://doi.org/10.1016/j.ijrmms.2018.10.011.
  45. Zhou, Q., Zhu, Z., Wang, X., Zhou, J., Lang, L. and Zhang, X. (2019), "The effect of a pre-existing crack on a running crack in brittle material under dynamic loads", Fatigue Fract. Eng. Mater. Struct., 42(11), 2544-2557. https://doi.org/10.1111/ffe.13105.
  46. Zhu, Z., Li, Y., Xie, J. and Liu, B. (2015), "The effect of principal stress orientation on tunnel stability", Tunn. Undergr. Sp. Tech., 49, 279-286. https://doi.org/10.1016/j.tust.2015.05.009.
  47. Zhu, Z., Mohanty, B. and Xie, H. (2007), "Numerical investigation of blasting-induced crack initiation and propagation in rocks", Int. J. Rock Mech. Min. Sci., 44(3), 412-424. https://doi.org/10.1016/j.ijrmms.2006.09.002.
  48. Zhu, Z., Xie, H. and Ji, S. (1997), "The mixed boundary problems for a mixed mode crack in a finite plate", Eng. Fract. Mech., 56(5), 647-655. https://doi.org/10.1016/S0013-7944(96)00123-3.
  49. Zuo, Y., Zhang, Q., Xu, T., Liu, Z., Qiu, Y. and Zhu, W. (2015), "Numerical Tests on Failure Process of Rock Particle under Impact Loading", Shock Vib., 2015, 1-12. https://doi.org/10.1155/2015/678573.