DOI QR코드

DOI QR Code

Field experimental study for layered compactness of subgrade based on dimensional analysis

  • Han, Dandan (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Zhou, Zhijun (School of Highway, Chang'an University) ;
  • Lei, Jiangtao (Division of Geotechnical Engineering and Geosciences, Department of Civil and Environmental Engineering, Polytechnic University of Catalonia (UPC)) ;
  • Lin, Minguo (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Zhan, Haochen (School of Highway, Chang'an University)
  • Received : 2021.10.20
  • Accepted : 2022.03.25
  • Published : 2022.06.10

Abstract

The Compaction effect is important for evaluating the subgrade construction. However, there is little research exploring the compaction quality of deep soil using hydraulic compaction. According to reinforcement effect analysis, dimensional analysis is adopted in this work to analyze subgrade compactness within the effective reinforcement depth, and a prediction model is obtained. A hydraulic compactor is then employed to carry out an in-situ reinforcement test on gravel soil subgrade, and the subgrade parameters before and after reinforcement are analyzed. Results show that a reinforcement difference exists inside the subgrade, and the effective reinforcement depth is defined as increasing compactness to 90% in the depth direction. Layered compactness within the effective reinforcement depth is expressed by parameters including the drop distance of the rammer, peak acceleration, tamping times, subgrade settlement, and properties of rammer and filler. Finally, a field test is conducted to verify the results.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Key R & D Program of China (No. 2018YFC0808706) and the Project on Social Development of Shaanxi Provincial Science (No. 2018SF382).

References

  1. Adam, D., Adam, C. and Falkner F.J. (2011), "Vibration emission induced by Rapid Impact Compaction", Proceedings of the 8th international conference on structural dynamics, 914-921, Leuven, Belgium, August.
  2. Allouzi, R., Bodour, W.A.L. Alkloub, A. and Tarawneh, B. (2019), "Finite-element model to simulate ground-improvement technique of rapid impact compaction", Proceedings of the institution of civil engineers-ground improvement, 172(1), 44-52. https://doi.org/10.1680/jgrim.18.00057.
  3. Anderegg, R. and Kaufmann, K. (2004), "Intelligent compaction with vibratory rollers-Feedback control systems in automatic compaction and compaction control", Transport. Res. Rec., 1868, 124-134. https://doi.org/10.3141/1868-13.
  4. Arias-Lara, D. and De-la-Colina, J. (2018), "Assessment of methodologies to estimate displacements from measured acceleration records", Measurement, 114(2018), 261-273. https://doi.org/10.1016/j.measurement.2017.09.019.
  5. Bai, T., Yang, H., Chen, X.B., Zhang, S.C. and Jin, Y.S. (2020), "In-situ monitoring and reliability analysis of an embankment slope with soil variability", Geomech. Eng., 23(3), 261-273. https://doi.org/10.12989/gae.2020.23.3.261.
  6. Barman, M., Nazari, M., Imran, S.A., Commuri, S. and Zaman, M. (2016), "Quality Improvement of Subgrade Through Intelligent Compaction", Transport. Res. Rec., 2579(1), 59-69. https://doi.org/10.3141/2579-07.
  7. Butterfield, R. (2001), "Dimensional analysis for geotechnical engineers", Geotechnique, 49(3), 357-366. https://doi.org/10.1680/geot.51.1.91.39352.
  8. Buzzi, O. (2010), "On the use of dimensional analysis to predict swelling strain", Eng. Geol., 116(1-2), 149-156. https://doi.org/10.1016/j.enggeo.2010.08.005.
  9. Buzzi, O., Giacomini, A. and Fityus, S. (2011), "Towards a dimensionless description of soil swelling behaviour", Geotechnique, 61(3), 271-277. https://doi.org/10.1680/geot.7.00194.
  10. Cai, H.B., Kuczek, T., Dunston, P.S. and Li, S. (2017), "Correlating intelligent compaction data to in situ soil compaction quality measurements", J. Constr. Eng. M., 143(8), 04017038. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001333.
  11. Cai, J., Wang, Y.Y. and Luo, M.D. (2013), "Model tests on the layout of punning position in dynamic compaction for loess", Appl. Mech. Mater., 2685(813), 304-309. https://doi.org/10.4028/www.scientific.net/AMM.405-408.304.
  12. Carter, J.P., Sabetamal, H., Nazem, M. and Sloan S.W. (2015), "One-dimensional test problems for dynamic consolidation", Acta Geotech., 10(1), 173-178. https://doi.org/10.1007/s11440-014-0336-x.
  13. Dimitrakopoulos, E., Makris, N. and Kappos, A.J. (2009b), "Dimensional analysis of the earthquake-induced pounding between adjacent struc-tures", Earthq. Eng. Struct. D., 38(7), 867-886. https://doi.org/10.1002/eqe.872.
  14. Dimitrakopoulos, E., Makris, N. and Kappos, A.J. (2010), "Dimensional analysis of the earthquake response of a pounding oscillator", J. Eng. Mech., 136(3), 299-310. https://doi.org/10.1061/(ASCE)0733-9399(2010)136:3(299).
  15. Dobrzycki, P., Kongar-Syuryun, C. and Khairutdinov, A. (2019), "Vibration reduction techniques for Rapid Impulse Compaction (RIC)", J. Phys.: Conference Series, 1425(1), 012202. http://doi.org/10.1088/1742-6596/1425/1/012202.
  16. Erem yants, V.I. and Uraimov, M. (2009), "Dynamics of hydraulic vibration machine for soil compaction", J. Mach. Manuf. Reliab., 38(5), 425-430. https://doi.org/10.3103/S1052618809050033.
  17. Feng, S.J., Hu, B., Zhang, X. and Shui, W.H. (2012), "Model test study on impact parameters' influence on tamping effect", J. Tongji U. (Natural S.), 40(8), 1147-1153. https://doi.org/10.3969/j.issn.0253-374x.2012.08.005.
  18. Ghanbari, E. and Hamidi, A. (2014), "Numerical modeling of rapid impact compaction in loose sands", Geomech. Eng., 6(5), 487-502. https://doi.org/10.12989/gae.2014.6.5.487.
  19. Gruzin, A.V., Gruzin, V.V. and Shalay, V.V. (2018), "Model dynamics of a rammer's operating element in a soil foundation of a tank for liquid hydrocarbons storage", AIP. Conf. Proc., 2007(1), 030009. https://doi.org/10.1063/1.5051870.
  20. He, C.M. (2006), "Experiment and Research on strengthening high embankment by dynamic compaction method", M.D. Dissertation, Central South University, Changsha.
  21. Herrera, C., Costa P.A. and Caicedo, B. (2018), "Numerical modelling and inverse analysis of continuous compaction control", Transp. Geotech., 17, 165-177. https://doi.org/10.1016/j.trgeo.2018.09.012.
  22. Hu, C.M., Wang, Y.Y., Mei, Y., Yuan, Y.L. and Zhang, S.S. (2018), "Compaction techniques and construction parameters of loess as filling material", Geomech. Eng., 15(6), 1143-1151. https://doi.org/18.15.6.1143. https://doi.org/10.12989/GAE.2018.15.6.1143
  23. Hu, N.C. (2007), "Study on design parameters of foundation reinforcement by dynamic compaction method", M.D. Dissertation, Shandong University, Jinan.
  24. Hua, T.B., Yang, X.G., Yao, Q. and Li, H.T. (2018), "Assessment of real-time compaction quality test indexes for rockfill Material based on roller vibratory acceleration analysis", Adv. Mater. Sci. Eng., 2018, 1-15. https://doi.org/10.1155/2018/2879321.
  25. Huang, S.G., Wang, L.J. and Wang, K. (2014), "Application and Numerical Simulation of dynamic compaction on collapsible loess subgrade", Proceeding of the 3rd International Conference on Railway Engineering, Beijing, China, July.
  26. JTG E40-2007 (2007), Test Methods of Soils for Highway Engineering[S]. Beijing: People's Communications Press.
  27. JTG/T 3610-2019 (2019), Technical Specifications for Construction of Highway Subgrades, Ministry of transport of the people's Republic of China; Beijing, China.
  28. Kodikara, J., Islam, T. and Sounthararajah, A. (2018), "Review of soil compaction: History and recent developments", Transp. Geotech., 17, 24-34. https://doi.org/10.1016/j.trgeo.2018.09.006.
  29. Li, C. (2018), "Study on Effective Reinforcement Depth of Dynamic Compaction of Backfilled Sand Foundation", M.D. Dissertation, China University of Geosciences, Beijing.
  30. Ling, J.M., Lin, S., Qian, J.S., Zhang, J.K., Han, B.Y. and Liu, M. (2018), "Continuous compaction control technology for granite residual subgrade compaction", J. Mater. Civil Eng., 30(12), 255-261. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002522.
  31. Ma, Z.Y., Dang, F.N. and Liao, H.J. (2014), "Numerical study of the dynamic compaction of gravel soil ground using the discrete element method", Granular Matter., 16(6), 881-889. https://doi.org/10.1007/s10035-014-0529-x.
  32. Mayne, P.W., Jones, J.S. and Dumas, J.C. (1984), "Ground response to dynamic compaction", J. Geotech. Eng. ASCE, 110(6), 757-774. https://doi.org/ 10.1061/(ASCE)0733-9410(1984)110:6(757).
  33. Meehan, C.L., Cacciola, D.V., Tehrani, F.S. and Baker, W.J. (2017), "Assessing soil compaction using continuous compaction control and location-specific in situ tests", Automat. Constr., 73, 31-44. https://doi.org/10.1016/j.autcon.2016.08.017.
  34. Meehan, C.L., Tehrani, F.S. and Vahedifard, F. (2012), "A comparison of density-based and modulus-based in situ test measurements for compaction control", Geotech. Test. J., 35(3), 387-399. https://doi.org/10.1520/GTJ103479
  35. Mei, Y., Hu, C.M., Yuan, Yuan, Y.L., Wang, X.Y. and Zhao, N. (2016), "Experimental study on deformation and strength property of compacted loess", Geomech. Eng., 11(1), 161-175. https://doi.org/10.12989/gae.2016.11.1.161.
  36. Min, Y.Z., Tao, J. and Ren, W.Z. (2020), "A high-precision online monitoring system for surface settlement imaging of railway subgrade", Measurement, 159, 107707. https://doi.org/10.1016/j.measurement.2020.107707.
  37. Mollamahmutoglu M. and Avci E. (2018), "Dynamic compaction experience in alluvial soils of Carsamba (Turkey)", Maejo. Int. J. Sci. Tech., 12(03),206-220. https://doi.org/
  38. Nazhat, Y. and Airey, D. (2015), "The kinematics of granular soils subjected to rapid impact loading", Granul. Matter., 17(1), 1-20. https://doi.org/10.1007/s10035-014-0544-y.
  39. Nie, Z.H. (2011), "Comparison experimental study on subgrade compaction quality test methods", Appl. Mech. Mater., 71-78, 4679-4684. https://doi.org/10.4028/www.scientific.net/AMM.71-78.4679.
  40. Parvizi, M. (2009), "Soil response to surface impact loads during low energy dynamic compaction", J. Appl. S., 9(11), 2088-2096. https://doi.org/10.3923/jas.2009.2088.2096.
  41. Pistrol, J. and Adam, D. (2018), "Fundamentals of roller integrated compaction control for oscillatory rollers and comparison with conventional testing methods", Transp. Geotech., 17, 75-84. https://doi.org/10.1016/j.trgeo.2018.09.010.
  42. Rinehart, R.V., Mooney, M.A, Facas, N.F. and Musimbi, O.M. (2012), "Examination of roller-Integrated continuous compaction control on Colorado test site", Transp. Res. Rec., 2310(1), 3-9. https://doi.org/10.3141/2310-01.
  43. Sabbar, A.S., Chegenizadeh, A. and Nikraz, H. (2018), "Effect of slag and bentonite on shear strength parameters of sandy soil", Geomech. Eng., 15(1), 659-668. https://doi.org/10.12989/gae.2018.15.1.659.
  44. Senseney, C.T. and Mooney, M.A. (2010), "Characterization of two-layer soil system using a lightweight deflectometer with radial sensors", Transp. Res. Rec., 2186(1), 21-28. https://doi.org/10.3141/2186-03.
  45. Tehrani, F.S., Meehan, C.L. and Vahedifard, F. (2014), "Comparison of density-based and modulus-based in situ tests for earthwork quality control", Geotech. Spec. Publ., (234 GSP), 2345-2354. https://doi.org/10.1061/9780784413272.228.
  46. Thilakasiri, H.S., Gunaratne, M., Mullins, G., Stinnette, P. and Jory, B. (1996), "Investigation of impact stresses induced in laboratory dynamic compaction of soft soils", Int. J. Numer. Anal. Met., 20(10), 753-767. https://doi.org/10.1002/(SICI)1096-9853(199610)20:10<753:AID-NAG846>3.0.CO;2-R.
  47. Tian, L.S. Chen, H.K., Sun, Y.L., Zhang, Q.H. and Liao, H.R. (2018), "Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests", Geomech. Eng., 16(2), 113-124. https://doi.org/10.12989/gae.2018.16.2.113.
  48. Torrijo, F.J., Garzon-Roca, J., Alija, S. and Quinta-Ferreira, M. (2017), "Dynamic compaction evaluation using in situ tests in Sagunto's Harbor, Valencia (Spain)", Environ. Earth Sci., 76(19), 658. https://doi.org/10.1007/s12665-017-7033-7.
  49. Viyanant, C., Rathje, E.M. and Rauch, A.F. (2004), "Compaction control of crushed concrete and recycled asphalt pavement using nuclear gauge", Proceeding of Geotechnical Engineering for Transportation Projects v.1(Geo-Trans 2004), 126, 958-966, Los Angeles, CA, USA, January.
  50. Wang, X.B. (2011), "Experimental study on Application of on-line compactness detection technology", M.D. Dissertation, Chang'an University, Xi'an.
  51. Wang, Y.X. and Liao, Y. (2012), "Experiment research of the lateral properties and density variation of loess subgrade to dynamic compaction for mountainous highway", Appl. Mech. Mater., 1975(412), 1571-1574. https://doi.org/10.4028/www.scientific.net/AMM.204-208.1571.
  52. Wersall, C., Nordfelt, I. and Larsson, S. (2018), "Resonant roller compaction of gravel in full-scale tests", Transp. Geotech., 14, 93-97. https://doi.org/10.1016/j.trgeo.2017.11.004.
  53. White, D.J., Jaselskis, E.J., Schaefer, V.R. and Cackler, E.T. (2005), "Real-Time Compaction Monitoring in Cohesive Soils from Machine Response", Transp. Res. Rec., 1936, 173-180. https://doi.org/10.3141/1936-20.
  54. Wu, Q.Y., Wang, T., Ge, H.B. and Zhu, H.P. (2019), "Dimensional analysis of pounding response of an oscillator based on modified Kelvin pounding model", J. Aerosp. Eng., 32(4), 04019039. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001018.
  55. Wu, Y.K., Sang, X.S. and Niu, B. (2012), "High-speed hydraulic compactor application in the bacdkfilled of bridge platform", Appl. Mech. Mater., 212-213, 1201-1204. dimensional10.4028/www.scientific.net/AMM.212-213.1201.
  56. Xia, D.C. and Li, W.L. (2015), "Dynamic compaction real-time detection based on acceleration measurement", J. Vib. Shock, 34(15), 45-50. https://doi.org/10.13465/j.cnki.jvs.2015.15.009.
  57. Xing, H.F., Liu, L.L. and Luo, Y. (2019), "Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability", Geomech. Eng., 18(4), 353-362.https://doi.org/10.12989/gae.2019.18.4.353.
  58. Xing, X.M., Chen, L.F., Yuan, Z.H. and Shi, Z.N. (2019), "An improved time-series model considering rheological Parameters for surface deformation monitoring of soft clay subgrade", Sensors, 19(14), 3073. https://doi.org/10.3390/s19143073.
  59. Xu, J.B., Li, H., Du, K., Yan, C.G, Zhao, X., Li, W., and Xu, X.Z. (2018), "Field investigation of force and displacement within a strata slope using a real-time remote monitoring system", Environ. Earth. Sci., 77(15). https://doi.org/10.1007/s12665-018-7729-3.
  60. Xu, M., Song, E.X. and Cao, G.X. (2009), "Compressibility of broken rock-fine grain soil mixture", Geomech. Eng., 1(2), 169-178. https://doi.org/10.12989/gae.2009.1.2.169.
  61. Xu, T.Y., Zhou, Z.J., Yan, R.P., Zhang, Z.P., Zhu, L.X., Chen, C.R., Xu, F. and Liu, T. (2020), "Real-time monitoring method for layered compaction quality of loess subgrade based on hydraulic compactor reinforcement", Sensors, 20(15), 4288. https://doi.org/10.3390/s20154288.
  62. Xu, W.J., Li, C.Q. and Zhang, H.Y. (2015), "DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test", Geomech. Eng., 9(6), 815-827. https://doi.org/10.12989/gae.2015.9.6.815.
  63. Yan, B., Lin, P.Y. and Yu, H.T. (2011), "Analysus of settlement and tamping energy dissipation", Chinese J. Geotechnic, 33(S1), 249-252.
  64. Yang, J.G., Peng, W.X. and Liu, D.Y. (2004), "Research of choosing tamping factors for dynamic consolidation method", Rock Soil Mech., 2004(8), 1335-1339. https://doi.org/10.16285/j.rsm.2004.08.035.
  65. Yao, Y.P. and Zhang, B.Z. (2016), "Reinforcement range of dynamic compaction based on volumetric strain", Rock Soil Mech., 37(9), 2663-2671. https://doi.org/10.16285/j.rsm.2016.09.031
  66. Zhang, D.Z. and Xiong, Z.Q. (2008), "Calculation of dispersion curve by combined cross-spectrum and phase shift method and its application to evaluate compactness of subgrade", Proceeding of the 3rd International Conference on Environmental and Engineering Geophysics, Wuhan, China, June.
  67. Zhang, G.X., Yuan, Z.X., Wang, N., Zhang, Z.Z. and Gao, P. (2013), "Dynamic Response Analysis of Compaction Loess Subgrade", Adv. Mat. Res., 671-674, 202-208. https://doi.org/10.4028/www.scientific.net/AMR.671-674.202.
  68. Zhang, Y., Liu, J.K., Fang, J.H. and Xu A.H. (2013), "Application of dynamic compaction and rolling compaction in the subgrade improvement of Qarhan-Golmud Highway", Sci. Cold Arid Reg., 5(5), 603-607. https://doi.org/10.3724/SP.J.1226.2013.00603.
  69. Zhang, Z.P., Zhou, Z.J., Guo, T., Xu, T.Y., Zhu, L.X., Xu, F., Chen, C.R., and Liu, T. (2021), "A measuring method for layered compactness of loess subgrade based on hydraulic compaction", Meas. Sci. Technol., 32(5), 055106. https://doi.org/10.1088/1361-6501/abd7ab.
  70. Zhou, S.Y., Kang, Y.L., Xie, H.M., Wang, L.H. and Zhang, Q. (2019), "An approach integrating dimensional analysis and field data for predicting the load on tunneling machine", KSCE J. Civ. Eng., 23(7), 3180-3187. https://doi.org/10.1007/s12205-019-0266-0.