DOI QR코드

DOI QR Code

Newer Insights on Ferrate(VI) Reactions with Various Water Pollutants: A Review

  • Received : 2022.05.13
  • Accepted : 2022.05.27
  • Published : 2022.06.10

Abstract

Ferrate (VI) [Fe(VI)] has multi-functional features, which include potential oxidant, coagulant, and disinfectant. Because of these distinctive properties, numerous studies on the synthesis of ferrate (VI) and its possible applications in a wide research areas have been investigated. This review highlights the recent development made on different synthesis methods for ferrate including wet chemical, electrochemical, and thermal methods. The recent advancements achieved in ferrate (VI) oxidation and the synergistic effect of the oxidative properties of ferrate (VI) in the presence of various compounds or materials are also included. Moreover, this review discusses the applications of ferrate (VI) for degrading various types of water pollutants and its reaction mechanism. The optimized experimental conditions and interaction mechanisms of ferrate (VI) with micro-pollutants, dyes, and other organic compounds are also elaborated upon to provide greater insight for future studies. Lastly, the limitations and prospects of the ferrate use in the treatment of polluted water are described.

Keywords

Acknowledgement

One of the author DT acknowledges the CSIR, New Delhi providing the financial assistance in the form of Extra Mural Research Grant vide No. 24(354)/18-EMR-II. This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A3A01062424).

References

  1. P. Satapute, M. K. Paidi, M. Kurjogi, and S. Jogaiah, Physiological adaptation and spectral annotation of Arsenic and Cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis, Environ. Pollut., 251, 555-563 (2019). https://doi.org/10.1016/j.envpol.2019.05.054
  2. J. Chen, X. Xu, X. Zeng, M. Feng, R. Qu, Z. Wang, N. Nesnas, and V. K. Sharma, Ferrate(VI) oxidation of polychlorinated diphenyl sulfides: Kinetics, degradation, and oxidized products, Water Res., 143, 1-9 (2018). https://doi.org/10.1016/j.watres.2018.06.023
  3. G. Bhavya, S. A. Belorkar, R. Mythili, N. Geetha, H. S. Shetty, S. S. Udikeri, and S. Jogaiah, Remediation of emerging environmental pollutants: A review based on advances in the uses of eco-friendly biofabricated nanomaterials, Chemosphere, 275, 1-19 (2021).
  4. P. Gago-Ferrero, M. Gros, L. Ahrens, and K. Wiberg, Impact of on-site, small and large scale wastewater treatment facilities on levels and fate of pharmaceuticals, personal care products, artificial sweeteners, pesticides, and perfluoroalkyl substances in recipient waters, Sci. Total Environ., 601-602, 1289-1297 (2017). https://doi.org/10.1016/j.scitotenv.2017.05.258
  5. S. Klatte, H. C. Schaefer, and M. Hempel, Pharmaceuticals in the environment - A short review on options to minimize the exposure of humans, animals and ecosystems, Sustain. Chem. Pharm., 5, 61-66 (2017). https://doi.org/10.1016/j.scp.2016.07.001
  6. A. Talaiekhozani, M. Salari, M. R. Talaei, M. Bagheri, and Z. Eskandari, Formaldehyde removal from wastewater and air by using UV, ferrate(VI) and UV/ferrate(VI), J. Environ. Manage., 184, 204-209 (2016). https://doi.org/10.1016/j.jenvman.2016.09.084
  7. Z. Yang, R. Su, S. Luo, R. Spinney, M. Cai, R. Xiao, and Z. Wei, Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: An experimental and theoretical study, Sci. Total Environ., 590-591, 751-760 (2017). https://doi.org/10.1016/j.scitotenv.2017.03.039
  8. P. Jepson and R. Law, Persistent pollutants, persistent threats, Science, 352, 1388-1389 (2016). https://doi.org/10.1126/science.aaf9075
  9. T. Ye, Z. Wei, R. Spinney, C. J. Tang, S. Luo, R. Xiao, and D. D. Dionysiou, Chemical structure-based predictive model for the oxidation of trace organic contaminants by sulfate radical, Water Res., 116, 106-115 (2017). https://doi.org/10.1016/j.watres.2017.03.015
  10. N. Premnath, K. Mohanrasu, R. Guru Raj Rao, G. H. Dinesh, G. S. Prakash, V. Ananthi, K. Ponnuchamy, G. Muthusamy, and A. Arun, A crucial review on polycyclic aromatic Hydrocarbons - Environmental occurrence and strategies for microbial degradation, Chemosphere, 280, 1-14 (2021).
  11. M. K. Paidi, P. Satapute, M. S. Haider, S. S. Udikeri, Y. L. Ramachandra, D. V. N. Vo, M. Govarthanan, and S. Jogaiah, Mitigation of organophosphorus insecticides from environment: Residual detoxification by bioweapon catalytic scavengers, Environ. Res., 200, 1-12 (2021).
  12. W. S. Chai, J. Y. Cheun, P. S. Kumar, M. Mubashir, Z. Majeed, F. Banat, S. H. Ho, and P. L. Show, A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application, J. Clean. Prod., 296, 1-6 (2021).
  13. V. K. Sharma, Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism, Coord. Chem. Rev., 257, 495-510 (2013). https://doi.org/10.1016/j.ccr.2012.04.014
  14. C. Huo, A. Ahmed Dar, A. Nawaz, J. Hameed, G. albashar, B. Pan, and C. Wang, Groundwater contamination with the threat of COVID-19: Insights into CSR theory of Carroll's pyramid, J. King Saud Univ. Sci., 33, 101295 (2021). https://doi.org/10.1016/j.jksus.2020.101295
  15. T. Mackul'ak, J. Prousek, L. Svorc, J. Ryba, J. Skubak, and M. Drtil, Treatment of industrial wastewater with high content of polyethylene glycols by Fenton-like reaction system (Fe0/H2O2/H2SO4), Desalination Water Treat., 51, 4489-4496 (2013). https://doi.org/10.1080/19443994.2013.769704
  16. A. A. Dar, X. Wang, S. Wang, J. Ge, A. Shad, F. Ai, and Z. Wang, Ozonation of pentabromophenol in aqueous basic medium: Kinetics, pathways, mechanism, dimerization and toxicity assessment, Chemosphere, 220, 546-555 (2019). https://doi.org/10.1016/j.chemosphere.2018.12.154
  17. L. Hu and Z. Xia, Application of ozone micro-nano-bubbles to groundwater remediation, J. Hazard. Mater., 342, 446-453 (2018). https://doi.org/10.1016/j.jhazmat.2017.08.030
  18. B. Pan, Y. Wu, J. Qin, and C. Wang, Ultrathin Co0.85Se nanosheet cocatalyst for visible-light CO2 photoreduction, Catal. Today, 335, 208-213 (2019). https://doi.org/10.1016/j.cattod.2018.11.017
  19. X. D. Li and F. W. Schwartz, DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates, J. Contam. Hydrol., 68, 269-287 (2004). https://doi.org/10.1016/S0169-7722(03)00145-1
  20. J. Hu, Z. Li, A. Zhang, S. Mao, I. R. Jenkinson, and W. Tao, Using a strong chemical oxidant, potassium ferrate (K2FeO4), in waste activated sludge treatment: A review, Environ. Res., 188, 1-35 (2020).
  21. R. Yngard, S. Damrongsiri, K. Osathaphan, and V. K. Sharma, Ferrate(VI) oxidation of zinc-cyanide complex, Chemosphere, 69, 729-735 (2007). https://doi.org/10.1016/j.chemosphere.2007.05.017
  22. I. Ciabatti, F. Tognotti, and L. Lombardi, Treatment and reuse of dyeing effluents by potassium ferrate, Desalination, 250, 222-228 (2010). https://doi.org/10.1016/j.desal.2009.06.019
  23. J. Q. Jiang, and B. Lloyd, Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment, Water Res., 36, 1397-1408, (2002). https://doi.org/10.1016/S0043-1354(01)00358-X
  24. Y. Jiang, J. E. Goodwill, J. E. Tobiason, and D. A. Reckhow, Impacts of ferrate oxidation on natural organic matter and disinfection byproduct precursors, Water Res., 96, 114-125 (2016). https://doi.org/10.1016/j.watres.2016.03.052
  25. V. K. Sharma, G. W. Luther, and F. J. Millero, Mechanisms of oxidation of organosulfur compounds by ferrate(VI), Chemosphere, 82, 1083-1089 (2011). https://doi.org/10.1016/j.chemosphere.2010.12.053
  26. D. Tiwari and S. M. Lee, Ferrate(VI) in the treatment of wastewaters: A new generation green chemical, In: F. S. Garca Einschlag (Ed.). Waste Water - Treatment and reutilization, 241-276, InTech (2011).
  27. V. K. Sharma, R. Zboril, and R. S. Varma, Ferrates: greener oxidants with multimodal action in water treatment technologies, Acc. Chem. Res., 48, 182-191 (2015). https://doi.org/10.1021/ar5004219
  28. L. Delaude and P. Laszlo, A novel oxidizing reagent based on potassium ferrate(VI), J. Org. Chem., 61, 6360-6370 (1996). https://doi.org/10.1021/jo960633p
  29. J.-Q. Jiang, Advances in the development and application of ferrate(VI) for water and wastewater treatment, J. Chem. Tech. Biotech., 89, 165-177 (2014). https://doi.org/10.1002/jctb.4214
  30. Z. Macova and K. Bouzek, The influence of electrolyte composition on electrochemical ferrate(VI) synthesis. Part II: anodic dissolution kinetics of a steel anode rich in silicon, J. Appl. Electrochem., 41, 615-626 (2011).
  31. P. Canizares, C. Saez, A. Sanchez-Carretero, and M. Rodrigo, Synthesis of novel oxidants by electrochemical technology, J. Appl. Electrochem., 39, 2143-2149 (2009). https://doi.org/10.1007/s10800-009-9792-7
  32. V. Sharma, L. Chen, and R. Zboril, High Valent FeVI (Ferrate): A sustainable green oxidant in organic chemistry and transformation of pharmaceuticals, ACS Sustain. Chem. Eng., 4, (2015).
  33. Y. L. Wei, Y. S. Wang, and C. H. Liu, Preparation of potassium ferrate from spent steel pickling liquid, Metals, 5, 1770-1787 (2015). https://doi.org/10.3390/met5041770
  34. Y. Lee, R. Kissner, and U. von Gunten, Reaction of ferrate(VI) with ABTS and self-decay of ferrate(VI): kinetics and mechanisms, Environ. Sci. Technol., 48, 5154-5162 (2014). https://doi.org/10.1021/es500804g
  35. V. K. Sharma, Potassium ferrate(VI): an environmentally friendly oxidant, Adv. Environ. Res., 6, 143-156 (2002). https://doi.org/10.1016/S1093-0191(01)00119-8
  36. V. K. Sharma, F. Liu, S. Tolan, M. Sohn, H. Kim, and M. A. Oturan, Oxidation of β-lactam antibiotics by ferrate(VI), Chem. Eng. J., 221, 446-451 (2013). https://doi.org/10.1016/j.cej.2013.02.024
  37. Y. Lee, M. Cho, J. Y. Kim, and J. Yoon, Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical, J. Ind. Eng. Chem., 10, 161-171 (2004). https://doi.org/10.1021/ie50098a038
  38. B. Yang, G. G. Ying, Z. F. Chen, J. L. Zhao, F. Q. Peng, and X. W. Chen, Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A, Water Res., 62, 211-219 (2014). https://doi.org/10.1016/j.watres.2014.05.056
  39. Q. Han, W. Dong, H. Wang, T. Liu, Y. Tian, and X. Song, Degradation of tetrabromobisphenol A by ferrate(VI) oxidation: Performance, inorganic and organic products, pathway and toxicity control, Chemosphere, 198, 92-102 (2018). https://doi.org/10.1016/j.chemosphere.2018.01.117
  40. P. Zhang, G. Zhang, J. Dong, M. Fan, and G. Zeng, Bisphenol A oxidative removal by ferrate (Fe(VI)) under a weak acidic condition, Sep. Purif. Technol., 84, 46-51 (2012). https://doi.org/10.1016/j.seppur.2011.06.022
  41. Z. Zhou and J. Q. Jiang, Treatment of selected pharmaceuticals by ferrate(VI): Performance, kinetic studies and identification of oxidation products, J. Pharm. Biomed. Anal., 106, 37-45 (2015). https://doi.org/10.1016/j.jpba.2014.06.032
  42. Z. Zhou and J. Q. Jiang, Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI), Chemosphere, 119, 95-100 (2015).
  43. L. Lalthazuala, D. Tiwari, S. M. Lee, and S. S. Choi, Efficient removal of sulfamethoxazole in aqueous solutions using ferrate (VI): A greener treatment, Appl. Chem. Eng., 32, 340-347 (2021). https://doi.org/10.14478/ACE.2021.1031
  44. M. Feng, X. Wang, J. Chen, R. Qu, Y. Sui, L. Cizmas, Z. Wang, and V. K. Sharma, Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products, Water Res., 103, 48-57 (2016). https://doi.org/10.1016/j.watres.2016.07.014
  45. K. Manoli, G. Nakhla, M. Feng, V. K. Sharma, and A. K. Ray, Silica gel-enhanced oxidation of caffeine by ferrate(VI), Chem. Eng. J., 330, 987-994 (2017). https://doi.org/10.1016/j.cej.2017.08.036
  46. M. Feng and V. K. Sharma, Enhanced oxidation of antibiotics by ferrate(VI)-sulfur(IV) system: Elucidating multi-oxidant mechanism, Chem. Eng. J., 341, 137-145 (2018). https://doi.org/10.1016/j.cej.2018.01.112
  47. S. Sun, J. Jiang, L. Qiu, S. Pang, J. Li, C. Liu, L. Wang, M. Xue, and J. Ma, Activation of ferrate by carbon nanotube for enhanced degradation of bromophenols: Kinetics, products, and involvement of Fe(V)/Fe(IV), Water Res., 156, 1-8 (2019). https://doi.org/10.1016/j.watres.2019.02.057
  48. K. Manoli, G. Nakhla, A. K. Ray, and V. K. Sharma, Enhanced oxidative transformation of organic contaminants by activation of ferrate(VI): Possible involvement of FeV/FeIV species, Chem. Eng. J., 307, 513-517 (2017). https://doi.org/10.1016/j.cej.2016.08.109
  49. M. Ghosh, K. Manoli, J. B. Renaud, L. Sabourin, G. Nakhla, V. K. Sharma, and A. K. Ray, Rapid removal of acesulfame potassium by acid-activated ferrate(VI) under mild alkaline conditions, Chemosphere, 230, 416-423 (2019). https://doi.org/10.1016/j.chemosphere.2019.05.069
  50. Y. Chen, Y. Xiong, Z. Wang, Y. Chen, G. Chen, and Z. Liu, UV/ferrate(VI) oxidation of profenofos: efficiency and mechanism, Desalination Water Treat., 55, 1-8 (2014).
  51. G. Matafonova and V. Batoev, Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review, Water Res., 132, 177-189 (2018). https://doi.org/10.1016/j.watres.2017.12.079
  52. C. Luo, M. Feng, V. K. Sharma, and C. H. Huang, Oxidation of pharmaceuticals by ferrate(VI) in hydrolyzed urine: Effects of major inorganic constituents, Environ. Sci. Technol., 53, 5272-5281 (2019). https://doi.org/10.1021/acs.est.9b00006
  53. H. Aslani, S. Nasseri, R. Nabizadeh, A. Mesdaghinia, M. Alimohammadi, and S. Nazmara, Haloacetic acids degradation by an efficient Ferrate/UV process: Byproduct analysis, kinetic study, and application of response surface methodology for modeling and optimization, J. Environ. Manage., 203, 218-228 (2017). https://doi.org/10.1016/j.jenvman.2017.07.072
  54. V. M. Mboula, V. Hequet, Y. Andres, Y. Gru, R. Colin, J. M. Dona-Rodriguez, L. M. Pastrana-Martinez, A. M. T. Silva, M. Leleu, A. J. Tindall, S. Mateos, and P. Falaras, Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity, Appl. Catal. B Environ., 162, 437-444 (2015). https://doi.org/10.1016/j.apcatb.2014.05.026
  55. Y. H. Chuang, A. Szczuka, F. Shabani, J. Munoz, R. Aflaki, S. D. Hammond, and W. A. Mitch, Pilot-scale comparison of microfiltration/reverse osmosis and ozone/biological activated carbon with UV/hydrogen peroxide or UV/free chlorine AOP treatment for controlling disinfection byproducts during wastewater reuse, Water Res., 152, 215-225 (2019). https://doi.org/10.1016/j.watres.2018.12.062
  56. B. Pan, M. Feng, T. J. McDonald, K. Manoli, C. Wang, C. H. Huang, and V. K. Sharma, Enhanced ferrate(VI) oxidation of micropollutants in water by carbonaceous materials: Elucidating surface functionality, Chem. Eng. J., 398, 1-31 (2020) 125607.
  57. W. Jiang, L. Chen, S. Batchu, P. Gardinali, L. Jasa, B. Marsalek, R. Zboril, D. Dionysiou, K. O'Shea, and V. Sharma, Oxidation of microcystin-LR by ferrate(VI): Kinetics, degradation pathways, and toxicity assessments, Environ. Sci. Technol., 48, 12154-12172 (2014).
  58. X. Zhu, J. Li, B. Xie, D. Feng, and Y. Li, Accelerating effects of biochar for pyrite-catalyzed Fenton-like oxidation of herbicide 2,4-D, Chem. Eng. J., 391, 1-12 (2020).
  59. S. Wu, H. Liu, Y. Lin, C. Yang, W. Lou, J. Sun, C. Du, D. Zhang, L. Nie, K. Yin, and Y. Zhong, Insights into mechanisms of UV/ferrate oxidation for degradation of phenolic pollutants: Role of superoxide radicals, Chemosphere, 244, 1-39 (2020).
  60. S. Q. Tian, L. Wang, Y. L. Liu, and J. Ma, Degradation of organic pollutants by ferrate/biochar: Enhanced formation of strong intermediate oxidative iron species, Water Res., 183, 116054 (2020). https://doi.org/10.1016/j.watres.2020.116054
  61. L. Zheng, J. Cui, and Y. Deng, Emergency water treatment with combined ferrate(VI) and ferric salts for disasters and disease outbreaks, Environ. Sci. Water Res. Technol., 6, 2816-2831 (2020). https://doi.org/10.1039/D0EW00483A
  62. A. Acosta-Rangel, M. Sanchez-Polo, M. Rozalen, J. Rivera-Utrilla, A. M. S. Polo, M. S. Berber-Mendoza, and M. V. Lopez-Ramon, Oxidation of sulfonamides by ferrate(VI): Reaction kinetics, transformation byproducts and toxicity assesment, J. Environ. Manage., 255, 1-11 (2020).
  63. G. Anquandah, V. Sharma, D. A. Knight, S. Batchu, and P. Gardinali, Oxidation of trimethoprim by ferrate(VI): Kinetics, products, and antibacterial activity, Environ. Sci. Technol., 45, 10575-10581 (2011). https://doi.org/10.1021/es202237g
  64. S. Barisci, F. Ulu, M. Sillanpaa, and A. Dimoglo, Evaluation of flurbiprofen removal from aqueous solution by electrosynthesized ferrate(VI) ion and electrocoagulation process, Chem. Eng. J., 262, 1218-1225 (2015). https://doi.org/10.1016/j.cej.2014.10.083
  65. Y. Y. Eng, V. K. Sharma, and A. K. Ray, Ferrate(VI): Green chemistry oxidant for degradation of cationic surfactant, Chemosphere, 63, 1785-1790 (2006). https://doi.org/10.1016/j.chemosphere.2005.08.062
  66. T. Yang, L. Wang, Y. L. Liu, W. Zhang, H. J. Cheng, M. C. Liu, and J. Ma, Ferrate oxidation of bisphenol F and removal of oxidation products with ferrate resulted particles, Chem. Eng. J., 383, 1-8 (2020).
  67. B. Chen, Z. Xu, H. Ya, X. Chen, and M. Xu, Impact of the water input from the eastern Qiongzhou Strait to the Beibu Gulf on Guangxi coastal circulation, Acta Oceanol. Sin., 38, 1-11 (2019).
  68. M. Czolderova, M. Behul, J. Filip, P. Zajicek, R. Grabic, A. Vojs-Stanova, M. Gal, K. Kerekes, J. Hives, J. Ryba, M. Rybanska, P. Brandeburova, and T. Mackulak, 3D printed polyvinyl alcohol ferrate(VI) capsules: Effective means for the removal of pharmaceuticals and illicit drugs from wastewater, Chem. Eng. J., 349, 269-275 (2018). https://doi.org/10.1016/j.cej.2018.05.089
  69. S. S. Rashid and Y. Q. Liu, Comparison of life cycle toxicity assessment methods for municipal wastewater treatment with the inclusion of direct emissions of metals, PPCPs and EDCs, Sci. Total Environ., 756, 1-13 (2021).
  70. J. O. Tijani, O. O. Fatoba, and L. F. Petrik, A review of pharmaceuticals and endocrine-disrupting compounds: Sources, effects, removal, and detections, Water. Air. Soil Pollut., 224, 1-43 (2013).
  71. J. Chen, Y. Qi, X. Pan, N. Wu, J. Zuo, C. Li, R. Qu, Z. Wang, and Z. Chen, Mechanistic insights into the reactivity of Ferrate(VI) with phenolic compounds and the formation of coupling products, Water Res., 158, 338-349 (2019). https://doi.org/10.1016/j.watres.2019.04.045
  72. L. Sailo, D. Tiwari, and S. M. Lee, Degradation of some micro-pollutants from aqueous solutions using ferrate (VI): Physicochemical studies, Sep. Sci. Technol., 52, 2756-2766 (2017).
  73. G. Li, N. Wang, B. Liu, and X. Zhang, Decolorization of azo dye Orange II by ferrate(VI)-hypochlorite liquid mixture, potassium ferrate(VI) and potassium permanganate, Desalination, 249, 936-941 (2009). https://doi.org/10.1016/j.desal.2009.06.065
  74. G. R. Xu, Y. P. Zhang, and G. B. Li, Degradation of azo dye active brilliant red X-3B by composite ferrate solution, J. Hazard. Mater., 161, 1299-1305 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.090
  75. O. Turkay, S. Barisci, and A. Dimoglo, Kinetics and mechanism of methylene blue removal by electrosynthesized ferrate(VI), Sep. Sci. Technol., 51, 1924-1931 (2016). https://doi.org/10.1080/01496395.2016.1182189
  76. Z. Eskandari, A. Talaiekhozani, M. R. Talaie, and F. Banisharif, Enhancing ferrate(VI) oxidation process to remove blue 203 from wastewater utilizing MgO nanoparticles, J. Environ. Manage., 231, 297-302 (2019). https://doi.org/10.1016/j.jenvman.2018.10.056
  77. J. H. Zhu, X. L. Yan, Y. Liu, and B. Zhang, Improving alachlor biodegradability by ferrate oxidation, J. Hazard. Mater., 135, 94-9 (2006). https://doi.org/10.1016/j.jhazmat.2005.11.028
  78. S. Wu, H. Li, X. Li, H. He, and C. Yang, Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants, Chem. Eng. J., 353, 533-541 (2018). https://doi.org/10.1016/j.cej.2018.06.133
  79. H. Liu, J. Chen, N. Wu, X. Xu, Y. Qi., L. Jiang, X. Wang, and Z. Wang, Oxidative degradation of chlorpyrifos using ferrate(VI): Kinetics and reaction mechanism, Ecotoxicol. Environ. Saf., 170, 259-266 (2019). https://doi.org/10.1016/j.ecoenv.2018.11.132
  80. H. Liu, X. Pan, J. Chen, Y. Qi, R. Qu, and Z. Wang, Kinetics and mechanism of the oxidative degradation of parathion by Ferrate(VI), Chem. Eng. J., 365, 142-152 (2019). https://doi.org/10.1016/j.cej.2019.02.040
  81. V. K. Sharma, S. K. Mishra, and A. K. Ray, Kinetic assessment of the potassium ferrate(VI) oxidation of antibacterial drug sulfamethoxazole, Chemosphere, 62, 128-134 (2006). https://doi.org/10.1016/j.chemosphere.2005.03.095
  82. V. K. Sharma and S. K. Mishra, Ferrate(VI) oxidation of ibuprofen: A kinetic study, Environ. Chem. Lett., 3, 182-185 (2006). https://doi.org/10.1007/s10311-005-0002-5
  83. Y. Ma, N. Gao, and C. Li, Degradation and pathway of tetracycline hydrochloride in aqueous solution by potassium ferrate, Environ. Eng. Sci., 29, 357-362 (2012). https://doi.org/10.1089/ees.2010.0475
  84. J. Q. Jiang, Z. Zhou, S. Patibandla, and X. Shu, Pharmaceutical removal from wastewater by ferrate(VI) and preliminary effluent toxicity assessments by the zebrafish embryo model, Microchem. J., 110, 239-245 (2013). https://doi.org/10.1016/j.microc.2013.04.002
  85. S. Wang, Y. Hu, and J. Wang, Strategy of combining radiation with ferrate oxidation for enhancing the degradation and mineralization of carbamazepine, Sci. Total Environ., 687, 1028-1033 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.189
  86. S. Barisci, F. Ulu, M. Sillanpaa, and A. Dimoglo, The usage of different forms of ferrate (VI) ion for amoxicillin and ciprofloxacin removal: density functional theory based modelling of redox decomposition: The usage of different forms of ferrate (VI) ion, J. Chem. Technol. Biotechnol., 91, 257-266 (2016). https://doi.org/10.1002/jctb.4625
  87. L. Lalthazuala, Lalhmunsiama, D. Tiwari, and S. M. Lee, Efficient use of ferrate(VI) in the remediation of aqueous solutions contaminated with potential micropollutants: Simultaneous removal of triclosan and amoxicillin, Ind. J. Biochem. Biophysics 58, 532-542 (2021).
  88. Lalhmunsiama, L. Lalthazuala, and D. Tiwari, Ferrate (VI) as efficient oxidant for elimination of sulfamethazine in aqueous wastes: Real matrix implications. Environ. Eng. Res., 27 (5), 210256 (2021). https://doi.org/10.4491/eer.2021.256
  89. B. Yang, G. G. Ying, J. L. Zhao, S. Liu, L. J. Zhou, and F. Chen, Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(VI) treatment of secondary wastewater effluents, Water Res., 46, 2194-2204 (2012). https://doi.org/10.1016/j.watres.2012.01.047
  90. D. Tiwari, L. Sailo, Y.-Y. Yoon, and S.-M. Lee, Efficient use of ferrate(VI) in the oxidative removal of potassium hydrogen phthalate from aqueous solutions, Environ. Eng. Res., 23, 129-135 (2018). https://doi.org/10.4491/eer.2017.087
  91. Y. Lee, S. G. Zimmermann, A. T. Kieu, and U. von Gunten, Ferrate (Fe(VI)) application for municipal wastewater treatment: A novel process for simultaneous micropollutant oxidation and phosphate removal, Environ. Sci. Technol., 43, 3831-3838 (2009). https://doi.org/10.1021/es803588k
  92. Y. Lee, B. Escher and U. Gunten, Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens, Environ. Sci. Technol., 42, 6333-6339 (2008). https://doi.org/10.1021/es7023302
  93. V. Sharma, R. Zboril and T. McDonald, Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: A review, J. Environ. Sci. Health B., 49, 212-228 (2014). https://doi.org/10.1080/03601234.2014.858576
  94. A. Karlesa, G. A. D. De Vera, M. C. Dodd, J. Park, M. P. B. Espino, and Y. Lee, Ferrate(VI) oxidation of β-lactam antibiotics: reaction kinetics, antibacterial activity changes, and transformation products, Environ. Sci. Technol., 48, 10380-10389 (2014). https://doi.org/10.1021/es5028426
  95. E. M. Casbeer, V. K. Sharma, Z. Zajickova, and D. D. Dionysiou, Kinetics and mechanism of oxidation of tryptophan by ferrate(VI), Environ. Sci. Technol., 47, 4572-4580 (2013). https://doi.org/10.1021/es305283k
  96. N. Noorhasan, B. Patel, and V.K. Sharma, Ferrate(VI) oxidation of glycine and glycylglycine: Kinetics and products, Water Res., 44, 927-935 (2010). https://doi.org/10.1016/j.watres.2009.10.003
  97. D. Tiwari, L. Sailo, Y. Y. Yoon, and S. Lee, Efficient use of ferrate(VI) in the oxidative removal of potassium hydrogen phthalate (KHP) from aqueous solutions, Environ. Eng. Res., 23, 129-135 (2017). https://doi.org/10.4491/eer.2017.087
  98. J. Nie, S. Yan, L. Lian, V. K. Sharma, and W. Song, Development of fluorescence surrogates to predict the ferrate(VI) oxidation of pharmaceuticals in wastewater effluents, Water Res., 185, 1-11 (2020).
  99. C. Kim, V. R. Panditi, P. R. Gardinali, R. S. Varma, H. Kim, and V. K. Sharma, Ferrate promoted oxidative cleavage of sulfonamides: Kinetics and product formation under acidic conditions, Chem. Eng. J., 279, 307-316. (2015) https://doi.org/10.1016/j.cej.2015.04.139
  100. Y. Lee and U. von Gunten, Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical), Water Res., 44, 555-566 (2010). https://doi.org/10.1016/j.watres.2009.11.045
  101. J. Rivera-Utrilla, G. Prados-Joya, M. Sanchez-Polo, M. A. FerroGarcia, and I. Bautista-Toledo, Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon, J. Hazard. Mater., 170, 298-305 (2009). https://doi.org/10.1016/j.jhazmat.2009.04.096
  102. Z. Qiang and C. Adams, Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics, Water Res., 38, 2874-2890 (2004). https://doi.org/10.1016/j.watres.2004.03.017
  103. D. L. Ross and C. M. Riley, Aqueous solubilities of some variously substituted quinolone antimicrobials, Int. J. Pharm. 63, 237-250 (1990). https://doi.org/10.1016/0378-5173(90)90130-V
  104. J. Q. Jiang, A. Panagoulopoulos, M. Bauer, and P. Pearce, The application of potassium ferrate for sewage treatment, J. Environ. Manage., 79, 215-220 (2006). https://doi.org/10.1016/j.jenvman.2005.06.009
  105. P. K. Rai, J. Lee, S. K. Kailasa, E. E. Kwon, Y. F. Tsang, Y. S. Ok, and K. H. Kim, A critical review of ferrate(VI)-based remediation of soil and groundwater, Environ. Res., 160, 420-448 (2018). https://doi.org/10.1016/j.envres.2017.10.016
  106. J. Q. Jiang, S. Wang, and A. Panagoulopoulos, The exploration of potassium ferrate(VI) as a disinfectant/coagulant in water and wastewater treatment, Chemosphere, 63, 212-219 (2006). https://doi.org/10.1016/j.chemosphere.2005.08.020
  107. M. Lim and M. J. Kim, Removal of natural organic matter from river water using potassium ferrate(VI), Water. Air. Soil Pollut., 200, 181-189 (2009). https://doi.org/10.1007/s11270-008-9902-x
  108. E. Gombos, K. Barkacs, T. Felfoldi, C. Vertes, M. Mako, G. Palko, and G. Zaray, Removal of organic matters in wastewater treatment by ferrate (VI)-technology, Microchem. J., 107, 115-120 (2013). https://doi.org/10.1016/j.microc.2012.05.019
  109. Y. Deng, C. Jung, Y. Liang, N. Goodey, and T. D. Waite, Ferrate(VI) decomposition in water in the Absence and Presence of Natural Organic Matter (NOM), Chem. Eng. J., 334, 2335-2342 (2018). https://doi.org/10.1016/j.cej.2017.12.006
  110. D. Tiwari, Ferrate(VI) a greener solution: Synthesis, characterization, and multifunctional use in treating metal-complexed species in aqueous solution, In: V. K. Sharma, R.-a. Doong, H. Kim, R. S. Varma, and D. D. Dionysiou (eds.). Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation, 161-220, American Chemical Society (2016).
  111. L. Pachuau, S. M. Lee, and D. Tiwari, Ferrate(VI) in wastewater treatment contaminated with metal(II)-iminodiacetic acid complexed species, Chem. Eng. J., 230, 141-148 (2013). https://doi.org/10.1016/j.cej.2013.06.081
  112. M. R. Yu, Y. Y. Chang, D. Tiwari, L. Pachuau, S. M. Lee, and J. K. Yang, Treatment of wastewater contaminated with Cd(II)- NTA using Fe(VI), Desalin. Wat. Treat., 50, 43-50 (2012). https://doi.org/10.1080/19443994.2012.708534
  113. D. Tiwari, J.-K. Yang, Y.-Y. Chang, and S.-M. Lee, Application of ferrate(VI) on the decomplexation of Cu(II)-EDTA, Environ. Eng. Res., 13, 131-135 (2008). https://doi.org/10.4491/eer.2008.13.3.131
  114. L. Sailo, L. Pachuau, J. K. Yang, S. M. Lee, and D. Tiwari, Efficient use of ferrate(VI) for the remediation of wastewater contaminated with metal complexes, Environ. Eng. Res., 20, 89-97 (2015). https://doi.org/10.4491/eer.2014.079
  115. D. Tiwari, L. Sailo, and L. Pachuau, Remediation of aquatic environment contaminated with the iminodiacetic acid metal complexes using ferrate(VI), Sep. Purif. Technol., 132, 77-83 (2014). https://doi.org/10.1016/j.seppur.2014.05.010
  116. Seung-Mok Lee and T. Diwakar, Application of ferrate(VI) in the treatment of industrial wastes containing metal-complexed cyanides: A green treatment, J. Environ. Sci., 21,1347-1352 (2009). https://doi.org/10.1016/S1001-0742(08)62425-0
  117. D. Tiwari, H.-U. Kim, B.-J. Choi, S.-M. Lee, O.-H. Kwon, K.-M. Choi, and J.-K. Yang, Ferrate(VI): a green chemical for the oxidation of cyanide in aqueous/waste solutions, J. Environ. Sci. Health - Toxic/Hazard. Subst. Environ. Eng., 42, 803-810 (2007).