DOI QR코드

DOI QR Code

1H NMR Kinetic Studies for Degradation of Nitramine Explosives Using PdO Nanoparticle

PdO 나노입자를 이용한 니트라민 폭발물 분해반응에 대한 1H NMR 반응속도연구

  • Kye, Young-Sik (Department of Physics and Chemistry, Korea Military Academy) ;
  • Kumbier, Mathew (Department of Chemistry, University of Nebraska-Lincoln) ;
  • Kim, Dongwook (Department of Physics and Chemistry, Korea Military Academy) ;
  • Harbison, Gerard S. (Department of Chemistry, University of Nebraska-Lincoln) ;
  • Langell, Marjorie A. (Department of Chemistry, University of Nebraska-Lincoln)
  • 계영식 (육군사관학교 물리화학과) ;
  • ;
  • 김동욱 (육군사관학교 물리화학과) ;
  • ;
  • Received : 2022.05.19
  • Accepted : 2022.05.24
  • Published : 2022.06.10

Abstract

The PdO nanoparticle with large surface area was selected to solve the environmental pollution problem at fire range caused by high energy explosives research department explosive (RDX) and high melting explosive (HMX). By simulating water pollution, RDX and HMX nitramine explosives were dissolved in water, followed by the degradation reaction at 313 K by adding PdO. In order to measure the degradation reaction rate of explosives, 1H NMR was used, which can monitor the reaction rate without losing sample during reaction, and observe the progress of the reaction through the spectrum. The results showed that the degradation of RDX and HMX by PdO nanoparticles are pseudo-first order reaction. The degradation of explosives compounds were observed via the chemical shift and peak intensity analysis of NMR peaks. The measured rate constants for these reactions of RDX and HMX were 2.10 × 10-2 and 6.35 × 10-4 h-1, respectively. This study showed that the application of PdO nanoparticles for explosives degradation is a feasible option.

사격장 피탄지에 잔류되는 고폭화약으로 인한 환경오염 문제를 해결하기 위해 표면적이 큰 나노입자를 사용한 분해반응을 연구하였다. 수질오염을 가상하여 물에 용해시킨 research department explosive (RDX)와 high melting explosive(HMX) 니트라민 폭발물에 PdO를 첨가하여 313 K에서 분해반응시켰다. 폭발물의 분해반응속도를 측정하기 위해 반응 초기부터 종료시까지 시료 손실없이 반응속도를 측정할 수 있고 스펙트럼을 통하여 반응의 진행 정도를 관찰 가능한 1H NMR을 사용하였다. NMR 피크의 chemical shift 및 peak intensity 분석으로 유사 1차 분해반응이 일어남을 확인하였으며, 측정된 RDX와 HMX의 분해반응 속도상수는 각각 2.10 × 10-2과 6.35 × 10-4 h-1이었다. 본 연구로부터 산화금속 PdO 나노입자는 니트라민 폭발물 분해반응연구에 적용 가능함을 확인하였다.

Keywords

Acknowledgement

본 연구는 화랑대연구소 지원을 받아 수행되었습니다.

References

  1. W. E. Bachmann and J. C. Sheehan, A new method of preparing the high explosive RDX, J. Am. Chem. Soc., 71, 1842-1845 (1949). https://doi.org/10.1021/ja01173a092
  2. Z. Matys D. Powala, A. Orzechowski, and A. Maranda, Methods for obtaining octogen (HMX), CHEMIK, 66, 58-63 (2012).
  3. S. H, Kim, Effect of particle size on thermal property of RDX and HMX, Appl. Chem. Eng., 23, 352-357 (2012).
  4. V. K. Balakrishnan, F. Monteil-Rivera, M. A. Gautier, and J. Hawari, Sorption and stability of the polycyclic nitramine explosive CL-20 in soil, J. Environ. Qual., 33, 1362-1368 (2004). https://doi.org/10.2134/jeq2004.1362
  5. R. E. Card, Jr. and R. Autenrieth, Treatment of HMX and RDX contamination, 9-10, ANRCP-1998-2, Amarillo National Resource Center for Plutonium, Amarillo, Texas (1998).
  6. D. Kalderis, A. L. Juhasz, R. Boopathy, and S. Comfort, Soils contaminated with explosives: Environmental fate and evaluation of state-of the-art remediation processes, Pure Appl. Chem., 83, 1407-1484 (2011). https://doi.org/10.1351/pac-rep-10-01-05
  7. T. Urbanski, Chemistry and Technology of Explosives, Vol. 3, 77-78, Pergamon Press, Oxford (1967).
  8. R. M. X. Hesselmann and M. K. Stenstrom, Treatment concept for RDX-containing waste waters using activated carbon with offline solvent biological regeneration, School of Engineering and Applied Science Report Eng. 94-23, 2-5, University of California, Los Angeles (1994).
  9. E. S. Fiala, Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethylhydrazine and azoxymethane, Cancer, 40, 2436-2445 (1977). https://doi.org/10.1002/1097-0142(197711)40:5+<2436::AID-CNCR2820400908>3.0.CO;2-U
  10. W. L. McLellan, W. R. Hartley, and M. E. Brower, Health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), PB90-273533, US Army Medical Research and Development Command, Fort Detrick, Maryland (1988).
  11. W. L. McLellan, W. R. Hartley, and M. E. Brower, Health advisory for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), PB90-273525, US Army Medical Research and Development Command, Fort Detrick, Maryland (1988).
  12. E. Etnier, Water quality criteria for hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX), Regul. Toxicol. Pharmacol., 9, 147-157 (1989). https://doi.org/10.1016/0273-2300(89)90032-9
  13. E. L. Etnier and W. R. Hartley, Comparison of water quality criterion and lifetime health advisory for hexahydro-1,3,5-trinitro-1,3,5- triazine(RDX), Regul. Toxicol. Pharmacol., 11, 118-122 (1990). https://doi.org/10.1016/0273-2300(90)90015-4
  14. J. Aalto, Management of the groundwater contaminated by military explosives, Master of Science Thesis, Tampere University of Technology, Tampere, Finland (2016).
  15. P. Mahbub and P. N. Nesterenko, Application of photo degradation for remediation of cyclic nitramine and nitroaromatic explosives, RSC Adv., 6, 77603 (2016). https://doi.org/10.1039/C6RA12565D
  16. V. K. Balakrishnan, A. Halasz, and J. Hawari, Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: New insights into degradation pathways obtained by the observation of novel intermediates, Environ. Sci. Technol., 37, 1838-1843 (2003). https://doi.org/10.1021/es020959h
  17. H. M. Heilmann, U. Wiesmann, and M. K. Stenstrom, Kinetics of the alkaline hydrolysis of high explosives RDX and HMX in aqueous solution and adsorbed to activated carbon, Environ. Sci. Technol., 30, 1485-1492 (1996). https://doi.org/10.1021/es9504101
  18. M. Vidali, Bioremediation. An overview, Pure Appl. Chem., 73, 1163-1172 (2001). https://doi.org/10.1351/pac200173071163
  19. A. Bernstein and Z. Ronen, Biodegradation of the Explosives TNT, RDX and HMX. In: S. Singh, eds. Microbial Degradation of Xenobiotics, 135-176, Environmental Science and Engineering, Springer, Berlin, Heidelberg (2012).
  20. N. G. McCormick, J. H. Cornell, and H. S. Kaplan, Biodegradation of hexadro-1,3,5-trinitro-1,3,5-triazine, Appl. Environ. Microbiol., 42, 817-823 (1981). https://doi.org/10.1128/aem.42.5.817-823.1981
  21. J. Hawari, A. Halasz, T. Sheremata, S. Beaudet, C. Groom, L. Paquet, C. Rhofir, G. Ampleman, and S. Thiboutot, Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl. Environ. Microbiol., 66, 2652-2657 (2000). https://doi.org/10.1128/AEM.66.6.2652-2657.2000
  22. J. Hawari, A. Halasz, C. Groom, S. Deschamps, L. Paquet, C. Beaulieu, and A. Corriveau, Photodegradation of RDX in aqueous solution: a mechanistic probe for biodegradation with Rhodococcus sp., Environ. Sci. Technol., 36, 5117-5123 (2002). https://doi.org/10.1021/es0207753
  23. J. Hawari, A. Halasz, S. Beaudet, L. Paquet, G. Ampleman, and S. Thiboutot, Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge, Environ. Sci. Technol., 35, 70-75 (2001). https://doi.org/10.1021/es0013531
  24. D. Fournier, A. Halasz, J. Spain, P. Fiurasek, and J. Hawari, Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22, Appl. Environ. Microbiol., 68, 166-172 (2002). https://doi.org/10.1128/AEM.68.1.166-172.2002
  25. R. G. Jackson, E. L. Rylott, D. Fournier, J. Hawari, and N. C. Bruce, Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B, Proc. Natl. Acad. Sci., 104, 16822-16827 (2007). https://doi.org/10.1073/pnas.0705110104
  26. A. Halasz, D. Manno, S. E. Strand, N. C. Bruce, and J. Hawari, Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: New insights into the degradation pathway, Environ. Sci. Technol., 44, 9330-9336 (2010). https://doi.org/10.1021/es1023724
  27. M. E. Fuller, N. Perreault, and J. Hawari, Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Lett. Appl. Microbiol., 51, 313-318 (2010). https://doi.org/10.1111/j.1472-765X.2010.02897.x
  28. K. Ayoub, E. D. van Hullebusch, M. Cassir, and A. Bermond, Application of advanced oxidation processes for TNT removal: A review, J. Hazard. Mater., 178, 10-28 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.042
  29. M. C. Lapointe, R. Martel, and D. P. Cassidy, RDX degradation by chemical oxidation using calcium peroxide in bench scale sludge systems, Environ. Res., 188, 109836 (2020). https://doi.org/10.1016/j.envres.2020.109836
  30. M. J. Liou., M. C. Lu, and J. N. Chen, Oxidation of explosives by Fenton and photo-Fenton processes, Water Res., 37, 3172-3179 (2003). https://doi.org/10.1016/S0043-1354(03)00158-1
  31. K. B. Gregory, P. Larese-Casanova, G. F. Parkin, and M. M. Scherer, Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by FeII bound to magnetite, Environ. Sci. Technol., 38, 1408-1414 (2004). https://doi.org/10.1021/es034588w
  32. F. Monteil-Rivera, L. Paquet, A. Halasz, M. T. Montgomery, and J. Hawari, Reduction of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by zerovalent iron: product distribution, Environ. Sci. Technol., 39, 9725-9731 (2005). https://doi.org/10.1021/es051315n
  33. M. Muniz-Miranda, A. Zoppi, F. Muniz-Miranda, and N. Calisi, Palladium oxide nanoparticles: preparation, characterization and catalytic activity evaluation, Coatings, 10, 207 (2020). https://doi.org/10.3390/coatings10030207
  34. H. H. Lee, D. H. Jang, and S. C. Hong, A study on the simultaneous oxidation of CH4 and CO over Pd/TiO2 catalyst, Appl. Chem. Eng., 23, 253-258 (2012).
  35. S. H. Moon, W. J. Lee, and K. Y. Lee, Research trends in chemical analysis based explosive detection techniques, Appl. Chem. Eng., 33, 1-10 (2022).
  36. B. Didillon, E. Merlen, T. Pages, and D. Uzio, From colloidal particles to supported catalysts: a comprehensive study of palladium oxide hydrosols deposited on alumina, Stud. Surf. Sci. Catal., 118, 41-54 (1998). https://doi.org/10.1016/S0167-2991(98)80166-3
  37. S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309-319 (1938). https://doi.org/10.1021/ja01269a023
  38. T. L. Hwang and A. J. Shaka, Water suppression using excitation sculpting with gradients, J. Magn. Reson.; Series A, 112, 275-279 (1995). https://doi.org/10.1006/jmra.1995.1047
  39. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, and K. I. Goldberg, NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist, Organometallics, 29, 2176-2179 (2010). https://doi.org/10.1021/om100106e
  40. M. Szala and L. Szymanczyk, Analysis of common explosives in different solvents by nuclear magnetic resonance spectroscopy, Cent. Eur. J. Energ. Mater., 11, 129-142 (2014).
  41. A. Preiss, K. Levsen, E. Humpfer, and M. Spraul, Application of high-field proton nuclear magnetic resonance (1H-NMR) spectroscopy for the analysis of explosives and related compounds in groundwater samples-a comparison with the high-performance liquid chromatography (HPLC) method, Fresenius J. Anal. Chem., 356, 445-451 (1996). https://doi.org/10.1007/s0021663560445
  42. M. Godejohann, L. Heintz, C. Daolio, J. Berset, and D. Muff, Comprehensive non-targeted analysis of contaminated groundwater of a former ammunition destruction site using 1H-NMR and HPLC-SPE-NMR/TOF-MS, Environ. Sci. Technol., 43, 7055-7061 (2009). https://doi.org/10.1021/es901068d
  43. I. Berregi, G. del Campo, R. Caracena, and J. I. Miranda, Quantitative determination of formic acid in apple juices by 1H NMR spectrometry, Talanta, 72, 1049-1053 (2007). https://doi.org/10.1016/j.talanta.2006.12.031