DOI QR코드

DOI QR Code

Experimental and Computational Investigation of Wind Flow Field on a Span Roof Structure

  • K B Rajasekarababu (AIWE-LAB, School of Civil and Environmental Engineering, Harbin Institute of Technology) ;
  • G Vinayagamurthy (Aerodynamics laboratory, Centre for Innovation and Product Development, Vellore Institute of Technology Chennai) ;
  • Ajay Kumar T M (Design & Engineering, L&T Energy Hydrocarbon) ;
  • Selvirajan S (Wind Engineering Lab, CSIR- Structural Engineering Research Center)
  • Published : 2022.12.01

Abstract

Unconventional structures are getting more popular in recent days. Large-span roofs are used for many structures, such as airports, stadiums, and conventional halls. Identifying the pressure distribution and wind load acting on those structures is essential. This paper offers a collaborative study of computational fluid dynamics (CFD) simulations and wind tunnel tests for assessing wind pressure distribution for a building with a combined slender curved roof. The hybrid turbulence model, Improved Delayed Detached Eddy Simulation (IDDES), simulates the open terrain turbulent flow field. The wind-induced local pressure coefficients on complex roof structures and the turbulent flow field around the structure were thus calculated based upon open terrain wind flow simulated with the FLUENT software. Local pressure measurements were investigated in a boundary layer wind tunnel simultaneous to the simulation to determine the pressure coefficient distributions. The results predicted by CFD were found to be consistent with the wind tunnel test results. The comparative study validated that the recommended IDDES model and the vortex method associated with CFD simulation are suitable tools for structural engineers to evaluate wind effects on long-span complex roofs and plan irregular buildings during the design stage.

Keywords

Acknowledgement

The Science and Engineering Research Board fully funded this study, Department of Science and Technology, Government of India, through the Young Scientist Scheme, 2016-2019, under YSS/2015/001395. The authors were happy to acknowledge the Wind Engineering Lab of Structural Engineering Research Center-CSIR and the Aerodynamics laboratory of VIT Chennai for their unconditional support in conducting experiments at BLWT and the computational facility.

References

  1. ANSYS, (2020). ANSYS FLUENT user's guide. Canonsburg, PA, 15317.
  2. Garbaruk, A., Shur, M., Strelets, M., Spalart, P. R., & Balakrishnan, R. (2010). DDES and IDDES of tandem cylinders. Proceedings of the Benchmark Problems for Airframe Noise Computations BANC.
  3. Blocken, B., Stathopoulos, T., & Carmeliet, J. (2007). CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric environment, 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019
  4. Blocken, B. (2014). 50 years of computational wind engineering: past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, 129, 69-102. https://doi.org/10.1016/j.jweia.2014.03.008
  5. Lu, C. L., Li, Q. S., Huang, S. H., Chen, F. B., & Fu, X. Y. (2012). Large eddy simulation of wind effects on a longspan complex roof structure. Journal of Wind Engineering and Industrial Aerodynamics, 100(1), 1-18. https://doi.org/10.1016/j.jweia.2011.10.006
  6. Franke, J., Hellsten, A., Schlunzen, K. H., & Carissimo, B. (2007). Best practice guideline for the CFD simulation of flows in the urban environment-a summary. In 11th Conference on Harmonization within Atmospheric Dispersion Modelling for Regulatory Purposes, Cambridge, UK, July 2007. Cambridge Environmental Research Consultants.
  7. Franke, J., Hellsten, A., Schlunzen, K. H., & Carissimo, B. (2011). The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: a summary. International Journal of Environment and Pollution, 44(1-4), 419-427. https://doi.org/10.1504/IJEP.2011.038443
  8. Choi, J. I., Edwards, J. R., & Baurle, R. A. (2009). Compressible boundary-layer predictions at high Reynolds number using hybrid LES/RANS methods. AIAA journal, 47(9), 2179-2193.
  9. Gritskevich, M. S., Garbaruk, A. V., Schutze, J., & Menter, F. R. (2012). Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow, turbulence and combustion, 88(3), 431-449. https://doi.org/10.1007/s10494-011-9378-4
  10. Guide, R. S. D. The objectives of connection design are to transfer loads resisted by structural members and systems to other parts of the structure to form a "continuous load path";" to secure nonstructural components and equipment to the building; and• to fasten members in place during construction to resist temporary.
  11. Guseva, E. K., Garbaruk, A. V., & Strelets, M. K. (2016, November). Application of DDES and IDDES with shear layer adapted subgrid length-scale to separated flows. In Journal of Physics: Conference Series (Vol. 769, No. 1, p. 012081). IOP Publishing.
  12. IS 875 (Part3) - (2015). Code of Practice for Design Loads for Buildings and Structures, Third rev., New Delhi.
  13. Ke, J. (2019). RANS and hybrid LES/RANS simulations of flow over a square cylinder. Advances in Aerodynamics, 1(1), 1-24. https://doi.org/10.1186/s42774-019-0001-z
  14. Liu, J., & Niu, J. (2016). CFD simulation of the wind environment around an isolated high-rise building: An evaluation of SRANS, LES and DES models. Building and Environment, 96, 91-106. https://doi.org/10.1016/j.buildenv.2015.11.007
  15. Liu, J., & Niu, J. (2019). Delayed detached eddy simulation of pedestrian-level wind around a building array - The potential to save computing resources. Building and Environment, 152, 28-38.
  16. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149
  17. Montazeri, H., & Blocken, B. (2013). CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: validation and sensitivity analysis. Building and Environment, 60, 137-149. https://doi.org/10.1016/j.buildenv.2012.11.012
  18. Ramponi, R., & Blocken, B. (2012). CFD simulation of cross-ventilation for a generic isolated building: impact of computational parameters. Building and environment, 53, 34-48. https://doi.org/10.1016/j.buildenv.2012.01.004
  19. Rajasekarababu, K. B., & Vinayagamurthy, G. (2019). Experimental and computational simulation of an open terrain wind flow around a setback building using hybrid turbulence models. Journal of Applied Fluid Mechanics, 12(1), 145-154. https://doi.org/10.29252/jafm.75.253.29179
  20. Rajasekarababu, K. B., Vinayagamurthy, G., & Selvi Rajan, S. (2019, October). Experimental and computational investigation of outdoor wind flow around a setback building. In Building Simulation (Vol. 12, No. 5, pp. 891-904). Tsinghua University Press. https://doi.org/10.1007/s12273-019-0514-8
  21. Rajasekarababu, K. B., & Vinayagamurthy, G. (2020). CFD validation of wind pressure distribution on a tall building under the influence of upstream terrain. Progress in Computational Fluid Dynamics, an International Journal, 20(5), 284-298.
  22. Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayedDES and wall-modelled LES capabilities. International journal of heat and fluid flow, 29(6), 1638-1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
  23. Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayedDES and wall-modelled LES capabilities. International journal of heat and fluid flow, 29(6), 1638-1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
  24. Spalart, P. R. (1997). Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In Proceedings of first AFOSR international conference on DNS/LES. Greyden Press.
  25. Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detachededdy simulation, resistant to ambiguous grid densities. Theoretical and computational fluid dynamics, 20(3), 181-195. https://doi.org/10.1007/s00162-006-0015-0
  26. Strelets, M. (2001, January). Detached eddy simulation of massively separated flows. In 39th Aerospace sciences meeting and exhibit (p. 879).
  27. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., & Shirasawa, T. (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of wind engineering and industrial aerodynamics, 96(10-11), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058
  28. Wang, B., Mei, G., & Xu, N. (2020). Method for generating high-quality tetrahedral meshes of geological models by utilizing CGAL. MethodsX, 7, 101061.
  29. Xiao, L., Xiao, Z., Duan, Z., & Fu, S. (2015). Improveddelayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer. International Journal of Heat and Fluid Flow, 51, 138-150. https://doi.org/10.1016/j.ijheatfluidflow.2014.10.007
  30. Xiao, Z. X., & Luo, K. Y. (2015). Improved delayed detached-eddy simulation of massive separation around triple cylinders. Acta Mechanica Sinica, 31(6), 799-816.  https://doi.org/10.1007/s10409-015-0445-2