DOI QR코드

DOI QR Code

Exploring the contextual factors of episodic memory: dissociating distinct social, behavioral, and intentional episodic encoding from spatio-temporal contexts based on medial temporal lobe-cortical networks

일화기억을 구성하는 맥락 요소에 대한 탐구: 시공간적 맥락과 구분되는 사회적, 행동적, 의도적 맥락의 내측두엽-대뇌피질 네트워크 특징을 중심으로

  • Park, Jonghyun (Department of Psychology, Yonsei University) ;
  • Nah, Yoonjin (Department of Psychology, Yonsei University) ;
  • Yu, Sumin (Department of Psychology, Yonsei University) ;
  • Lee, Seung-Koo (Department of Radiology, Yonsei University College of Medicine) ;
  • Han, Sanghoon (Department of Psychology, Yonsei University)
  • 박종현 (연세대학교 심리학과) ;
  • 나윤진 (연세대학교 심리학과) ;
  • 유수민 (연세대학교 심리학과) ;
  • 이승구 (연세대학교 의과대학 영상의학과) ;
  • 한상훈 (연세대학교 심리학과)
  • Received : 2022.03.08
  • Accepted : 2022.06.09
  • Published : 2022.06.30

Abstract

Episodic memory consists of a core event and the associated contexts. Although the role of the hippocampus and its neighboring regions in contextual representations during encoding has become increasingly evident, it remains unclear how these regions handle various context-specific information other than spatio-temporal contexts. Using high-resolution functional MRI, we explored the patterns of the medial temporal lobe (MTL) and cortical regions' involvement during the encoding of various types of contextual information (i.e., journalism principle 5W1H): "Who did it?," "Why did it happen?," "What happened?," "When did it happen?," "Where did it happen?," and "How did it happen?" Participants answered six different contextual questions while looking at simple experimental events consisting of two faces with one object on the screen. The MTL was divided to sub-regions by hierarchical clustering from resting-state data. General linear model analyses revealed a stronger activation of MTL sub-regions, the prefrontal lobe (PFC), and the inferior parietal lobule (IPL) during social (Who), behavioral (How), and intentional (Why) contextual processing when compared with spatio-temporal (Where/When) contextual processing. To further investigate the functional networks involved in contextual encoding dissociation, a multivariate pattern analysis was conducted with features selected as the task-based connectivity links between the hippocampal subfields and PFC/IPL. Each social, behavioral, and intentional contextual processing was individually and successfully classified from spatio-temporal contextual processing, respectively. Thus, specific contexts in episodic memory, namely social, behavior, and intention, involve distinct functional connectivity patterns that are distinct from those for spatio-temporal contextual memory.

일화기억은 핵심 이벤트와 그에 연합된 맥락으로 구성된다. 해마와 해마 주변 영역이 일화기억의 부호화에서 맥락을 표상하는 역할에 관해 연구되어왔지만, 시공간적 맥락 외에 다양한 맥락-특이적 정보들에 대한 표상에 관한 연구는 많지 않다. 본 연구에서는 고해상도 자기기능공명기법을 이용하여 여러 맥락정보(예, 육하원칙 - 누가, 왜, 무엇을 언제, 어디서, 어떻게)의 부호화에 관여하는 내측두엽 및 대뇌피질 신경연결성의 특징을 탐색하였다. 참가자들은 두 명의 얼굴과 하나의 사물로 구성된 실험 이벤트를 보면서 여섯가지 맥락 부호화 과제를 수행하였다. 휴지기 기능적 자기공명영상 정보를 활용해 내측두엽의 세부 영역을 기능적으로 구분하였고 맥락 기억 과제별 기능적 신경연결성 네트워크를 탐색하였다. 일반선형화 모델 분석을 통해 시공간적 맥락정보를 처리할 때보다 사회적, 행동적, 의도 맥락을 연합할 때 내측두엽의 세부영역, 전전두엽, 하부두정엽 영역이 유의미하게 증가한 활성화를 보이며 관여함을 확인하였다. 나아가 이 영역들과 내측두엽 영역이 맥락조건간 차이에 관여하는 기능적 연결성 특징을 탐색하기 위하여 맥락부호화 과제를 수행하는 동안의 해마세부영역들과 전전두엽, 하부두정엽 등 간의 과제기반 기능적 연결성 정보들을 다변량 패턴분석의 주요입력변수로 선정하였고, 기계학습을 통해 맥락 조건 간 연결성 패턴분류를 시도하였다. 네트워크 패턴분류에서도 시공간 맥락 조건과 각 사회적, 행동적, 의도 맥락처리 조건 간에는 기능적 연결성의 차이가 두드러졌다. 본 연구결과를 통해 일화기억에서 특정 맥락을 처리하는 신경학적 기제의 특성과 맥락 조건 간 차이를 제시하였다.

Keywords

Acknowledgement

이 성과는 Office of Naval Research Global (N62909-16-1-2226)와 정부(과학기술정보동신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No.NRF-2019R1A2C1007399).

References

  1. Aminoff, E., Gronau, N., & Bar, M. (2006). The Parahippocampal Cortex Mediates Spatial and Nonspatial Associations. Cerebral Cortex, 17(7), 1493-1503. https://doi.org/10.1093/cercor/bhl078.
  2. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi : An Open Source Software for Exploring and Manipulating Networks. In Third International ICWSM Conference (pp. 361-362). https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.
  3. Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using the MarsBar toolbox for SPM 99. NeuroImage, 16(2), 497.
  4. Burgess, N., Maguire, E. A., Spiers, H. J., & O'Keefe, J. (2001). A Temporoparietal and Prefrontal Network for Retrieving the Spatial Context of Lifelike Events. NeuroImage, 14(2), 439-453. https://doi.org/10.1006/nimg.2001.0806.
  5. Colombo, M., Fernandez, T., Nakamura, K., & Gross, C. G. (1998). Functional Differentiation Along the Anterior-Posterior Axis of the Hippocampus in Monkeys. Journal of Neurophysiology, 80(2), 1002-1005. https://doi.org/10.1152/jn.1998.80.2.1002.
  6. Davachi, L., & DuBrow, S. (2015). How the hippocampus preserves order: the role of prediction and context. Trends in Cognitive Sciences, 19(2), 92-99. https://doi.org/10.1016/j.tics.2014.12.004.
  7. Dobbins, I. G., & Han, S. (2006). Cue- versus Probe-dependent Prefrontal Cortex Activity during Contextual Remembering. Journal of Cognitive Neuroscience, 18(9), 1439-1452. https://doi.org/10.1162/jocn.2006.18.9.1439.
  8. Duarte, A., Henson, R. N., Knight, R. T., Emery, T., & Graham, K. S. (2010). Orbito-frontal Cortex is Necessary for Temporal Context Memory. Journal of Cognitive Neuroscience, 22(8), 1819-1831. https://doi.org/10.1162/jocn.2009.21316.
  9. Eichenbaum, H. (2013). Memory on time. Trends in Cognitive Sciences, 17(2), 81-88. https://doi.org/10.1016/j.tics.2012.12.007.
  10. Eskenazi, T., Grosjean, M., Humphreys, G. W., & Knoblich, G. (2009). The role of motor simulation in action perception: a neuropsychological case study. Psychological Research Psychologische Forschung, 73(4), 477-485. https://doi.org/10.1007/s00426-009-0231-5.
  11. Feinberg, L. M., Allen, T. A., Ly, D., & Fortin, N. J. (2012). Recognition memory for social and non-social odors: Differential effects of neurotoxic lesions to the hippocampus and perirhinal cortex. Neurobiology of Learning and Memory, 97(1), 7-16. https://doi.org/10.1016/j.nlm.2011.08.008.
  12. Forwood, S., Winters, B., & Bussey, T. (2005). Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 hours. Hippocampus, 15(3), 347-355. https://doi.org/10.1002/hipo.20059.
  13. Grabner, R. H., Ischebeck, A., Reishofer, G., Koschutnig, K., Delazer, M., Ebner, F., & Neuper, C. (2009). Fact learning in complex arithmetic and figural-spatial tasks: The role of the angular gyrus and its relation to mathematical competence. Human Brain Mapping, 30(9), 2936-2952. https://doi.org/10.1002/hbm.20720.
  14. Grezes, J., & Decety, J. (2002). Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia, 40(2), 212-222. https://doi.org/10.1016/s0028-3932(01)00089-6.
  15. Hart, G. (1996). The five w's: An old tool for the new task of task analysis. Technical communication, 43(2), 139-145.
  16. Heekeren, H. R., Wartenburger, I., Schmidt, H., Schwintowski, H. P., & Villringer, A. (2003). An fMRI study of simple ethical decision-making. NeuroReport, 14(9), 1215-1219. https://doi.org/10.1097/00001756-200307010-00005.
  17. Hsieh, L. T., Gruber, M., Jenkins, L., & Ranganath, C. (2014). Hippocampal Activity Patterns Carry Information about Objects in Temporal Context. Neuron, 81(5), 1165-1178. https://doi.org/10.1016/j.neuron.2014.01.015.
  18. Hutchinson, J. B., Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic retrieval: Convergent and divergent effects of attention and memory. Learning & Memory, 16(6), 343-356. https://doi.org/10.1101/lm.919109.
  19. Kirchhoff, B. A., Wagner, A. D., Maril, A., & Stern, C. E. (2000). Prefrontal-Temporal Circuitry for Episodic Encoding and Subsequent Memory. The Journal of Neuroscience, 20(16), 6173-6180. https://doi.org/10.1523/jneurosci.20-16-06173.2000.
  20. Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., & Damasio, A. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446(7138), 908-911. https://doi.org/10.1038/nature05631.
  21. Kvavilashvili, L. (1987). Remembering intention as a distinct form of memory. British Journal of Psychology, 78(4), 507-518. https://doi.org/10.1111/j.2044-8295.1987.tb02265.x.
  22. Lee, D. (2008). Game theory and neural basis of social decision making. Nature Neuroscience, 11(4), 404-409. https://doi.org/10.1038/nn2065.
  23. Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3), 1233-1239. https://doi.org/10.1016/s1053-8119(03)00169-1.
  24. Manns, J. R., & Eichenbaum, H. (2006). Evolution of declarative memory. Hippocampus, 16(9), 795-808. https://doi.org/10.1002/hipo.20205.
  25. Mayes, A., Montaldi, D., & Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11(3), 126-135. https://doi.org/10.1016/j.tics.2006.12.003.
  26. Minear, M., & Park, D. C. (2004). A lifespan database of adult facial stimuli. Behavior Research Methods, Instruments, & Computers, 36(4), 630-633. https://doi.org/10.3758/bf03206543.
  27. Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. NeuroImage, 59(3), 2636-2643. https://doi.org/10.1016/j.neuroimage.2011.08.076.
  28. Nadel, L., Hoscheidt, S., & Ryan, L. R. (2013). Spatial Cognition and the Hippocampus: The Anterior- Posterior Axis. Journal of Cognitive Neuroscience, 25(1), 22-28. https://doi.org/10.1162/jocn_a_00313.
  29. Olman, C. A., Davachi, L., & Inati, S. (2009). Distortion and Signal Loss in Medial Temporal Lobe. PLoS ONE, 4(12), e8160. https://doi.org/10.1371/journal.pone.0008160.
  30. Pantazatos, S. P., Talati, A., Pavlidis, P., & Hirsch, J. (2012). Decoding Unattended Fearful Faces with Whole-Brain Correlations: An Approach to Identify Condition-Dependent Large-Scale Functional Connectivity. PLoS Computational Biology, 8(3), e1002441. https://doi.org/10.1371/journal.pcbi.1002441.
  31. Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of the human hippocampus. Trends in Cognitive Sciences, 17(5), 230-240. https://doi.org/10.1016/j.tics.2013.03.005.
  32. Rissman, J., Gazzaley, A., & D'Esposito, M. (2004). Measuring functional connectivity during distinct stages of a cognitive task. NeuroImage, 23(2), 752-763. https://doi.org/10.1016/j.neuroimage.2004.06.035.
  33. Rugg, M. D., Vilberg, K. L., Mattson, J. T., Yu, S. S., Johnson, J. D., & Suzuki, M. (2012). Item memory, context memory and the hippocampus: fMRI evidence. Neuropsychologia, 50(13), 3070-3079. https://doi.org/10.1016/j.neuropsychologia.2012.06.004.
  34. Schedlbauer, A. M., Copara, M. S., Watrous, A. J., & Ekstrom, A. D. (2014). Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans. Scientific Reports, 4(1). https://doi.org/10.1038/srep06431.
  35. Shamay-Tsoory, S. G. (2010). The Neural Bases for Empathy. The Neuroscientist, 17(1), 18-24. https://doi.org/10.1177/1073858410379268.
  36. Simons, J. S., & Spiers, H. J. (2003). Prefrontal and medial temporal lobe interactions in long-term memory. Nature Reviews Neuroscience, 4(8), 637-648. https://doi.org/10.1038/nrn1178.
  37. Smith, D. M., & Mizumori, S. J. (2006). Hippocampal place cells, context, and episodic memory. Hippocampus, 16(9), 716-729. https://doi.org/10.1002/hipo.20208.
  38. Smith, S. M., & Vela, E. (2001). Environmental context-dependent memory: A review and meta-analysis. Psychonomic Bulletin & Review, 8(2), 203-220. https://doi.org/10.3758/bf03196157.
  39. Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., He, Y., Yan, C. G., & Zang, Y. F. (2011). REST: A Toolkit for Resting-State Functional Magnetic Resonance Imaging Data Processing. PLoS ONE, 6(9), e25031. https://doi.org/10.1371/journal.pone.0025031.
  40. Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The Medial Temporal Lobe. Annual Review of Neuroscience, 27(1), 279-306. https://doi.org/10.1146/annurev.neuro.27.070203.144130.
  41. Staresina, B. P., & Davachi, L. (2008). Selective and Shared Contributions of the Hippocampus and Perirhinal Cortex to Episodic Item and Associative Encoding. Journal of Cognitive Neuroscience, 20(8), 1478-1489. https://doi.org/10.1162/jocn.2008.20104.
  42. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15(1), 273-289. https://doi.org/10.1006/nimg.2001.0978.
  43. Vrticka, P., Andersson, F., Sander, D., & Vuilleumier, P. (2009). Memory for friends or foes: The social context of past encounters with faces modulates their subsequent neural traces in the brain. Social Neuroscience, 4(5), 384-401. https://doi.org/10.1080/17470910902941793.
  44. Wang, S. F., Ritchey, M., Libby, L. A., & Ranganath, C. (2016). Functional connectivity based parcellation of the human medial temporal lobe. Neurobiology of Learning and Memory, 134, 123-134. https://doi.org/10.1016/j.nlm.2016.01.005.
  45. Weaverdyck, M. E., Lieberman, M. D., & Parkinson, C. (2020). Tools of the Trade Multivoxel pattern analysis in fMRI: a practical introduction for social and affective neuroscientists. Social Cognitive and Affective Neuroscience, 15(4), 487-509. https://doi.org/10.1093/scan/nsaa057.
  46. Yan, C. G., & Zang, Y. F. (2010). DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in System Neuroscience. https://doi.org/10.3389/fnsys.2010.00013.
  47. Yonelinas, A. P., Ranganath, C., Ekstrom, A. D., & Wiltgen, B. J. (2019). A contextual binding theory of episodic memory: systems consolidation reconsidered. Nature Reviews Neuroscience, 20(6), 364-375. https://doi.org/10.1038/s41583-019-0150-4.
  48. Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 31(3), 1116-1128. https://doi.org/10.1016/j.neuroimage.2006.01.015.
  49. Zhang, W., van Ast, V. A., Klumpers, F., Roelofs, K., & Hermans, E. J. (2018). Memory Contextualization: The Role of Prefrontal Cortex in Functional Integration across Item and Context Representational Regions. Journal of Cognitive Neuroscience, 30(4), 579-593. https://doi.org/10.1162/jocn_a_01218.