DOI QR코드

DOI QR Code

Mechanical properties and failure mechanism of gravelly soils in large scale direct shear test using DEM

  • Tu, Yiliang (State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University) ;
  • Wang, Xingchi (School of Civil Engineering, Chongqing Jiaotong University) ;
  • Lan, Yuzhou (School of Civil Engineering, Chongqing Jiaotong University) ;
  • Wang, Junbao (Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xian University of Architecture and Technology) ;
  • Liao, Qian (State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University)
  • 투고 : 2021.07.31
  • 심사 : 2022.05.13
  • 발행 : 2022.07.10

초록

Gravelly soil is a kind of special geotechnical material, which is widely used in the subgrade engineering of railway, highway and airport. Its mechanical properties are very complex, and will greatly influence the stability of subgrade engineering. To investigate the mechanical properties and failure mechanism of gravelly soils, this paper introduced and verified a new discrete element method (DEM) of gravelly soils in large scale direct shear test, which considers the actual shape and broken characteristics of gravels. Then, the stress and strain characteristics, particle interaction, particle contact force, crack development and energy conversion in gravelly soils during the shear process were analyzed using this method. Moreover, the effects of gravel content (GC) on the mechanical properties and failure characteristics were discussed. The results reveal that as GC increases, the shear stress becomes more fluctuating, the peak shear stress increases, the volumetric strain tends to dilate, the average particle contact force increases, the cumulative number of cracks increases, and the shear failure plane becomes coarser. Higher GC will change the friction angle with a trend of "stability", "increase", and "stability". Differently, it affects the cohesion with a law of "increase", "stability" and "increase".

키워드

과제정보

The research described in this paper was financially supported by the National Natural Science Foundation of China (No. 51808083), the China Postdoctoral Science Foundation (No. 2020M673110), the Basic Research and Frontier Exploration Project of Chongqing of China (No. cstc2018jcyjAX0491), the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN201800713), the Opening Foundation of State Key Laboratory of Mountain Bridge and Tunnel Engineering (SKLBT-19-011) and the Opening Foundation of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (No. YT201904).

참고문헌

  1. Afifipour, M. and Moarefvand, P. (2014a), "Failure patterns of geomaterials with block-in-matrix texture: experimental and numerical evaluation", Arabian J. Geosci., 7(7), 2781-2792. https://doi.org/10.1007/s12517-013-0907-4.
  2. Afifipour, M. and Moarefvand, P. (2014b), "Mechanical behavior of bimrocks having high rock block proportion", Int. J. Rock Mech. Min., 65, 40-48. https://doi.org/10.1016/j.ijrmms.2013.11.008.
  3. Bahaaddini, M. (2017), "Effect of boundary condition on the shear behaviour of rock joints in the direct shear test", Rock Mech. Rock Eng., 50(5), 1141-1155. https://doi.org/10.1007/s00603-016-1157-z.
  4. Ben, N.O. and Einav, I. (2010), "The role of self-organization during confined comminution of granular materials", Philos. T. R. Soc. A, 36(8), 231-247. https://doi.org/10.1098/rsta.2009.0205.
  5. Bolton, M.D., Nakata, Y. and Cheng, Y.P. (2008), "Micro-and macro-mechanical behaviour of DEM crushable materials", Geotechnique, 58(6), 471-480. https://doi.org/10.1680/geot.2008.58.6.471.
  6. Bono, J. and Mcdowell, G.R. (2013), "On the micro mechanics of one-dimensional normal compression", Geotechnique, 63(11), 895-908. https://doi.org/10.1680/geot.12.p.041.
  7. Cen, D.F., Huang, D. and Ren, F. (2017), "Shear deformation and strength of the interphase between the soil-rock mixture and the benched bedrock slope surface", Acta Geotechnica, 12(2), 391-413. https://doi.org/10.1007/s11440-016-0468-2.
  8. Chang, W.J., Chang, C.W. and Zeng, J.K. (2014), "Liquefaction characteristics of gap-graded gravelly soils in K0 condition", Soil Dyn. Earthq. Eng., 56, 74-85. http://doi.org/10.1016/j.soildyn.2013.10.005.
  9. Chang, W.J. and Phantachang, T. (2016a), "Effects of gravel content on shear resistance of gravelly soils", Eng Geol, 207, 78-90. http://doi.org/10.1016/j.enggeo.2016.04.015.
  10. Chang, W.J., Phantachang, T. and Ieong, W.M. (2016b), "Evaluation of size and boundary effects in simple shear tests with distinct element modeling", J. Geoeng., 11(3), 133-142. http://doi.org/10.6310/jog.2016.11(3).3.
  11. Chang, W.J. and Chou, S.H. (2019), "Experimental study on shakedown compression of saturated granular soils due to pore pressure variation", J. Geoeng., 14(4), 247-257. https://doi.org/10.6310/jog.201912_14(4).4.
  12. Chang, W.J., Chou, S.H., Huang, H.P. and Chao, C.Y. (2021), "Development and verification of coupled hydro-mechanical analysis for rainfall-induced shallow landslides", Eng. Geol., 293(1), 106337. https://doi.org/10.1016/j.enggeo.2021.106337.
  13. Chen, J., Gao, R., Liu, Y., Shi, Z. and Zhang, R. (2021), "Numerical exploration of the behavior of coal-fouled ballast subjected to direct shear test", Constr. Build. Mater., 273, 121927. https://doi.org/10.1016/j.conbuildmat.2020.121927.
  14. Cheng, Y.P. and Minh, N.H. (2009), "DEM investigation of particle size distribution effect on direct shear behaviour of granular agglomerates", Proceedings of the 6 International Conference on Micromechanics of Granular Media, American, June.
  15. Cho, N.A., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
  16. Coli, N., Berry, P., Boldini, D. and Bruno, R. (2012), "The contribution of geostatistics to the characterisation of some bimrock properties", Eng. Geol., 137-138, 53-63. https://doi.org/10.1016/j.enggeo.2012.03.015.
  17. Danesh, A., Mirghasemi, A.A. and Palassi, M. (2020), "Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM)", Transportation Geotechnics, 23, 100357. https://doi.org/10.1016/j.trgeo.2020.100357.
  18. Einav, I. (2007), "Breakage mechanics-Part I: Theory", J. Mech. Phys. Solids, 55, 1274-1297. https://doi.org/10.1016/j.jmps.2006.11.003.
  19. Eliadorani, A., Fannin, R.J. and Wilkinson, J.M.T. (2005), "Shear strength of cohesionless soils at low stress", Geotechnique, 55(6), 467-478. https://doi.org/10.1680/geot.2005.55.6.467.
  20. Gong, H., Song, W., Huang, B., Shu, X., Han, B., Wu, H. and Zou, J. (2019), "Direct shear properties of railway ballast mixed with tire derived aggregates: Experimental and numerical investigations", Constr. Build. Mater., 200, 465-473. https://doi.org/10.1016/j.conbuildmat.2018.11.284.
  21. Graziani, A., Rossini, C. and Rotonda, T. (2012), "Characterization and DEM modeling of shear zones at a large dam foundation", Int. J. Geomech., 12(6), 648-664. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000220.
  22. Guo, Y., Ji, Y., Zhou, Q., Markine, V. and Jing, G. (2020), "Discrete element modelling of rubber-protected ballast performance subjected to direct shear test and cyclic loading", Sustainability, 12(7), 2836. https://doi.org/10.3390/su12072836
  23. Hardin, B.O. (1985), "Crushing of soil particles", J. Geotech. Eng., 111(10), 1177-1192. https://doi.org/10.1061/(asce)0733-9410(1985)111:10(1177).
  24. Hartl, J. and Ooi, J.Y. (2011), "Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments", Powder Technol., 212(1), 231-239. https://doi.org/10.1016/j.powtec.2011.05.022.
  25. Huang, M., Xu, C.S, Zhan, J.W and Wang, J.B. (2017), "Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body", Geomech. Eng., 13(2), 333-352. https://doi.org/10.12989/gae.2017.13.2.333.
  26. Huang, Y.H., Yang, S.Q., Tian, W.L. and Wu, S.Y. (2022), "Experimental and DEM study on failure behavior and stress distribution of flawed sandstone specimens under uniaxial compression", Theor. Appl. Fract. Mech., 118, 103266. https://doi.org/10.1016/j.tafmec.2022.103266.
  27. Indraratna, B. and Salim, W. (2002), "Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy", Proceedings of the Ice-Geotechnical Engineering, 155(4), 243-252. https://doi.org/10.1680/geng.155.4.243.38691.
  28. Indraratna, B., Thakur, P.K. and Vinod, J.S. (2012), "Semiempirical cyclic densification model for ballast incorporating particle breakage", Int. J. Geomech., 12(3), 260-271. https://doi.org/10.1061/(asce)gm.1943-5622.0000135.
  29. Indraratna, B., Ngo, T. and Rujikiatkamjorn, C. (2020), "Performance of ballast influenced by deformation and degradation: laboratory testing and numerical modeling", Int. J. Geomech., 20(1), 04019138. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001515.
  30. Jiang, S., Li, X., Tan, Y., Liu, H., Xu, Z. and Chen, R. (2017), "Discrete element simulation of SiC ceramic with pre-existing random flaws under uniaxial compression", Ceramics Int., 43(16), 13717-13728. https://doi.org/10.1016/j.ceramint.2017.07.084.
  31. Jiang, Y., Wang, L., Wu, Q., Sun, Z., Elmo, D. and Zheng, L. (2019), "An improved shear stress monitoring method in numerical direct shear tests by particle flow code", J. Test. Evaluation, 48(6), 4136-4152. https://doi.org/10.1520/JTE20180018.
  32. Jin, L., Zeng, Y.Z., Xia, L. and Ye, Y (2017), "Experimental and numerical investigation of mechanical behaviors of cemented soil-rock mixture", Geotech. Geol. Eng., 35(1), 337-354. https://doi.org/10.1007/s10706-016-0109-4.
  33. Jing, G.Q., Ji, Y.M., Qiang, W.L. and Zhang, R. (2020), "Experimental and numerical study on ballast flakiness and elongation index by direct shear test", Int. J. Geomech., 20(10), 04020169. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001791.
  34. Kalender, A., Sonmez, H., Medley, E., Tunusluoglu, C. and Kasapoglu, K.E. (2014), "An approach to predicting the overall strengths of unwelded bimrocks and bimsoils", Eng. Geol., 183, 65-79. http://doi.org/10.1016/j.enggeo.2014.10.007.
  35. Kamani, M. and Ajalloeian, R. (2020), "The effect of rock crusher and rock type on the aggregate shape", Constr. Build. Mater., 230(10), 1-13. https://doi.org/10.1016/j.conbuildmat.2019.117016.
  36. Kang, D.H., Choo, J. and Yun, T.S. (2013), "Evolution of pore characteristics in the 3D numerical direct shear test", Comput. Geotech., 49, 53-61. https://doi.org/10.1016/j.compgeo.2012.10.009.
  37. Katagiri, J., Matsushima, T. and Yamada, Y. (2010), "Simple shear simulation of 3D irregularly-shaped particles by image-based DEM", Granular Matter, 12(5), 491-497. https://doi.org/10.1007/s10035-010-0207-6.
  38. Kodicherla, S.P.K., Gong, G., Yang, Z.X., Krabbenhoft, K., Fan, L., Moy, C.K. and Wilkinson, S. (2019), "The influence of particle elongations on direct shear behaviour of granular materials using DEM", Granular Matter., 21(4), 1-12. https://doi.org/10.1007/s10035-019-0947-x.
  39. Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solid. Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
  40. Li, C.S., Zhang, D., Du, S.S. and Shi, B. (2016), "Computed tomography based numerical simulation for triaxial test of soil-rock mixture", Comput. Geotech., 73, 179-188. https://doi.org/10.1016/j.compgeo.2015.12.005.
  41. Lindquist, E.S. (1994), "The strength and deformation properties of melange", Ph.D. Dissertation, University of California, California.
  42. Liu, G., Rong, G., Peng, J. and Zhou, C. (2015), "Numerical simulation on undrained triaxial behavior of saturated soil by a fluid coupled-DEM model", Eng. Geol., 193(2), 256-266. https://doi.org/10.1016/j.enggeo.2015.04.019.
  43. Lobo-Guerrero, S. and Vallejo, L.E. (2005), "Discrete element method evaluation of granular crushing under direct shear test conditions", J. Geotech. Geoenviron. Eng., 131(10), 1295-1300. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1295).
  44. Medley, E.W. (1994), "The engineering characterization of melanges and similar block-in-matrix rocks (Bimrocks)", Ph.D. Dissertation, University of California at Berkeley, California.
  45. Ngo, N.T., Indraratna, B. and C. Rujikiatkamjorn. (2016), "Modelling geogrid-reinforced railway ballast using the discrete element method", Transp. Geotech., 8, 86-102. https://doi.org/10.1016/j.trgeo.2016.04.005.
  46. Rahmani, H. and Panah, A.K. (2020), "Effect of particle size and saturation conditions on the breakage factor of weak rockfill materials under one-dimensional compression testing", Geomech. Eng., 21(4), 315-326. http://dx.doi.org/10.12989/gae.2020.21.4.315.
  47. Salazar, A., Saez, E. and Pardo, G. (2015), "Modeling the direct shear test of a coarse sand using the 3D Discrete Element Method with a rolling friction model", Comput. Geotech., 67, 83-93. https://doi.org/10.1016/j.compgeo.2015.02.017.
  48. Seyyedan, S.M., Mirghasemi, A.A. and Mohammadi, S. (2021), "Numerical simulation of direct shear test on granular materials composed of breakable angular particles: A DEM-XFEM approach", Powder Technol., 391, 450-466. https://doi.org/10.1016/j.powtec.2021.06.038.
  49. Shahnazari, H. and Rezvani, R. (2013), "Effective parameters for the particle breakage of calcareous sands: An experimental study", Eng. Geol., 159(9), 98-105. http://doi.org/10.1016/j.enggeo.2013.03.005.
  50. Shinohara, K., Oida, M. and Golman, B. (2000), "Effect of particle shape on angle of internal friction by triaxial compression test", Powder Technol., 107(1-2), 131-136. https://doi.org/10.1016/S0032-5910(99)00179-5.
  51. Song, Z.P., Li, S.H., Wang, J.B., Sun, Z.Y. and Liu, J. (2018), "Determination of equivalent blasting load considering millisecond delay effect", Geomech. Eng., 15(2), 745-754. https://doi.org/10.12989/gae.2018.15.2.745.
  52. Sonmez, H., Gokceoglu, C., Mendly, E.W., Tuncay, E. and Nefeslioglu, H.A. (2006), "Estimating the uniaxial compressive strength of a volcanic bimrock", Int. J. Rock Mech. Min., 43(4), 554-561. https://doi.org/10.1016/j.ijrmms.2005.09.014.
  53. Sonmez, H., Ercanoglu, M., Kalender, A., Dagdelenler, G. and Tunusluoglu, C. (2016), "Predicting uniaxial compressive strength and deformation modulus of volcanic bimrock considering engineering dimension", Int. J. Rock Mech. Min., 86, 91-103. http://doi.org/10.1016/j.ijrmms.2016.03.022.
  54. Suhr, B., Marschnig, S. and Six, K. (2018), "Comparison of two different types of railway ballast in compression and direct shear tests: experimental results and DEM model validation", Granular Matter., 20(4), 1-13. https://doi.org/10.1007/s10035-018-0843-9.
  55. Tsoungui, O., Vallet, D. and Charmet, J.C. (1999), "Numerical model of crushing of grains inside two-dimensional granular materials", Powder Technol., 105(1-3), 190-198. https://doi.org/10.1016/s0032-5910(99)00137-0.
  56. Tu, Y.L., Chai, H.J., Liu, X.R., Wang, J.B. and Yu, J.Y. (2021), "An experimental investigation on the particle breakage and strength properties of soil-rock mixture", Arabian J. Geosci., 14, 840. https://doi.org/10.1007/s12517-021-07186-0.
  57. Wang, J.B, Zhang, Q., Song, Z.P. and Zhang, Y.W. (2020), "Creep properties and damage constitutive model of salt rock under uniaxial compression", Int. J. Damage Mech., 29(6), 902-922. https://doi:10.1177/1056789519891768.
  58. Wang, Y., Li, C.H. and Hu, Y.Z. (2018), "Use of X-ray computed tomography to investigate the effect of rock blocks on meso-structural changes in soil-rock mixture under triaxial deformation", Constr. Build. Mater., 164, 386-399. https://doi.org/10.1016/j.conbuildmat.2017.12.173.
  59. Xiao, J., Zhang, D., Wei, K. and Luo, Z. (2017), "Shakedown behaviors of railway ballast under cyclic loading", Constr. Build. Mater., 155, 1206-1214. https://doi.org/10.1016/j.conbuildmat.2017.07.225.
  60. Xu, W.J., Xu, Q. and Hu, R.L. (2011), "Study on the shear strength of soil-rock mixture by large scale direct shear test", Int. J. Rock Mech. Min. Sci., 48(8), 1235-1247. https://doi.org/10.1016/j.ijrmms.2011.09.018.
  61. Xu, W.J., Li, C.Q. and Zhang, H.Y. (2015), "DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test", Geomech. Eng., 9(6), 815-827. http://dx.doi.org/10.12989/gae.2015.9.6.815.
  62. Xu, W.J., Wang, S., Zhang, H.Y. and Zhang, Z.L. (2016), "Discrete element modelling of a soil-rock mixture used in an embankment dam", Int. J. Rock Mech. Min. Sci., 86, 141-156. https://doi.org/10.1016/j.ijrmms.2016.04.004.
  63. Xu, D.S., Tang, J.Y. and Zou, Y. (2019), "Macro and micro investigation of gravel content on simple shear behavior of sand-gravel mixture", Constr. Build. Mater., 221, 730-744. https://doi.org/10.1016/j.conbuildmat.2019.06.091.
  64. Zhang S., Tang H.M., Zhang H.B., Lei G.P. and Cheng H (2015), "Investigation of scale effect of numerical unconfined compression strengths of virtual colluvial-deluvial soil-rock mixture". Int. J. Rock Mech. Min., 77, 208-219. http://doi.org/10.1016/j.ijrmms.2015.04.012.
  65. Zhang, S. (2015), "Soil-rock mixture slope deformation behavior study based on structuredness", Ph.D. thesis, China University of Geosciences.
  66. Zhang, Z.L., Xu, W.J., Xia, W. and Zhang, H.Y. (2016), "Large-scale in-situ test for mechanical characterization of soil-rock mixture used in an embankment dam", Int. J. Rock Mech. Min. Sci., 86, 317-322. https://doi.org/10.1016/j.ijrmms.2015.04.001.
  67. Zhang, Z., Cui, Y., Chan, D.H. and Taslagyan, K.A. (2018), "DEM simulation of shear vibrational fluidization of granular material", Granular Matter., 20(71), 141-156. https://doi.org/10.1007/s10035-018-0844-8.
  68. Zhang, N., Hedayat, A., Bolanos Sosa, H.G., Gonzalez Cardenas, J.J., Salas Alvarez, G.E., Rivera, V.A. and Gonzalez, J. (2020), "Fracture and failure processes of geopolymerized mine tailings under uniaxial compression", Proceedings of the 54th US Rock Mechanics/Geomechanics Symposium. American, June.
  69. Zhou, Z., Yang, H., Xing, K. and Gao, W. (2018), "Prediction models of the shear modulus of normal or frozen soil-rock mixtures", Geomech. Eng., 15(2), 783-791. http://dx.doi.org/10.12989/gae.2018.15.2.783.