참고문헌
- Al_azrak, F. M., Elsharkawy, Z. F., Elkorany, A. S., el Banby, G. M., Dessowky, M. I., El-Samie, A., & Fathi, E. (2020). Copy-move forgery detection based on discrete and SURF transforms. Wireless Personal Communications, 110(1), 503-530. https://doi.org/10.1007/s11277-019-06739-7
- Arefi, M. F., & Poursadeqiyan, M. (2020). A review of studies on the COVID-19 epidemic crisis disease with a preventive approach. Work, 66(4), 717-729. https://doi.org/10.3233/wor-203218
- Aswal, V., Tupe, O., Shaikh, S., & Charniya, N. N. (2020). Single Camera Masked Face Identification. 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), 57-60.
- Banerjee, I., Ling, Y., Chen, M. C., Hasan, S. A., Langlotz, C. P., Moradzadeh, N., Chapman, B., Amrhein, T., Mong, D., Rubin, D. L., & others. (2019). Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Artificial Intelligence in Medicine, 97, 79-88. https://doi.org/10.1016/j.artmed.2018.11.004
- Bianchi, F. M., Grattarola, D., Livi, L., & Alippi, C. (2021). Graph neural networks with convolutional arma filters. IEEE Transactions on Pattern Analysis and Machine Intelligence.
- Cabani, A., Hammoudi, K., Benhabiles, H., & Melkemi, M. (2021). MaskedFace-Net-A dataset of correctly/incorrectly masked face images in the context of COVID-19. Smart Health, 19, 100144. https://doi.org/10.1016/j.smhl.2020.100144
- Chen, J., Hachem, E., & Viquerat, J. (2021). Graph neural networks for laminar flow prediction around random two-dimensional shapes. Physics of Fluids, 33(12), 123607. https://doi.org/10.1063/5.0064108
- Cheng, S., Tzimiropoulos, G., Shen, J., & Pantic, M. (2020). Faster, better and more detailed: 3d face reconstruction with graph convolutional networks. Proceedings of the Asian Conference on Computer Vision.
- Cho, S. W., Baek, N. R., Kim, M. C., Koo, J. H., Kim, J. H., & Park, K. R. (2018). Face detection in nighttime images using visible-light camera sensors with two-step faster region-based convolutional neural network. Sensors, 18(9), 2995. https://doi.org/10.3390/s18092995
- Christlein, V., Spranger, L., Seuret, M., Nicolaou, A., Kral, P., & Maier, A. (2019). Deep generalized max pooling. 2019 International Conference on Document Analysis and Recognition (ICDAR), 1090-1096.
- Lee, G.-H., & Lee, S.-W. (2020). Uncertainty-aware mesh decoder for high fidelity 3d face reconstruction. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6100-6109.
- Wu, W., Yin, Y., Wang, X., & Xu, D. (2018). Face detection with different scales based on faster R-CNN. IEEE Transactions on Cybernetics, 49(11), 4017-4028. https://doi.org/10.1109/tcyb.2018.2859482
- Lin, J., Yuan, Y., Shao, T., & Zhou, K. (2020). Towards high-fidelity 3D face reconstruction from in-the-wild images using graph convolutional networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5891-5900.
- Mohamed, S. S., Mohamed, W. A., Khalil, A. T., & Mohra, A. S. (2020). Deep learning face detection and recognition. International Journal of Advanced Science and Technology, 29(2), 1-6.
- Hung, B. T. (2021). Face recognition using hybrid HOG-CNN approach. In Research in Intelligent and Computing in Engineering (pp. 715-723). Springer, Singapore.
- Loey, M., Manogaran, G., Taha, M. H. N., & Khalifa, N. E. M. (2021a). A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement, 167, 108288. https://doi.org/10.1016/j.measurement.2020.108288
- Nagrath, P., Jain, R., Madan, A., Arora, R., Kataria, P., & Hemanth, J. (2021). SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2. Sustainable Cities and Society, 66, 102692. https://doi.org/10.1016/j.scs.2020.102692
- Chavda, J. Dsouza, S. Badgujar and A. Damani, "Multi-Stage CNN Architecture for Face Mask Detection," 2021 6th International Conference for Convergence in Technology (I2CT), 2021, pp. 1-8, doi: 10.1109/I2CT51068.2021.9418207.
- Mata, B. U., & others. (2021). Face Mask Detection Using Convolutional Neural Network. Journal of Natural Remedies, 21(12(1)), 14-19.
- Sandesara, A. G., Joshi, D. D., & Joshi, S. D. (2020). Facial Mask Detection Using Stacked CNN Model. Int. J. Sci. Res. Comput. Sci. Eng. Inform. Technol.
- Militante, S. v, & Dionisio, N. v. (2020). Real-time facemask recognition with alarm system using deep learning. 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC), 106-110.
- Mundial, I. Q., Hassan, M. S. U., Tiwana, M. I., Qureshi, W. S., & Alanazi, E. (2020). Towards facial recognition problem in COVID-19 pandemic. 2020 4rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), 210-214.
- Lee, S. H. (2020). Deep learning based face mask recognition for access control. Journal of the Korea Academia-Industrial Cooperation Society, 21(8), 395-400. https://doi.org/10.5762/KAIS.2020.21.8.395
- Hariri, W. (2021). Efficient masked face recognition method during the covid-19 pandemic. ArXiv Preprint ArXiv:2105.03026.
- Din, N. U., Javed, K., Bae, S., & Yi, J. (2020). A novel GAN-based network for unmasking of masked face. IEEE Access, 8, 44276-44287. https://doi.org/10.1109/access.2020.2977386
- Geng, L., Zhang, S., Tong, J., & Xiao, Z. (2019). Lung segmentation method with dilated convolution based on VGG-16 network. Computer Assisted Surgery, 24(sup2), 27-33. https://doi.org/10.1080/24699322.2019.1649071
- Hansen, M. F., Smith, M. L., Smith, L. N., Salter, M. G., Baxter, E. M., Farish, M., & Grieve, B. (2018). Towards on-farm pig face recognition using convolutional neural networks. Computers in Industry, 98, 145-152. https://doi.org/10.1016/j.compind.2018.02.016
- Kolar, Z., Chen, H., & Luo, X. (2018). Transfer learning and deep convolutional neural networks for safety guardrail detection in 2D images. Automation in Construction, 89, 58-70. https://doi.org/10.1016/j.autcon.2018.01.003
- Kumar, D., Garain, J., Kisku, D. R., Sing, J. K., & Gupta, P. (2020). Unconstrained and constrained face recognition using dense local descriptor with ensemble framework. Neurocomputing, 408, 273-284. https://doi.org/10.1016/j.neucom.2019.10.117
- Lin, K., Zhao, H., Lv, J., Li, C., Liu, X., Chen, R., & Zhao, R. (2020). Face detection and segmentation based on improved mask R-CNN. Discrete Dynamics in Nature and Society, 2020.
- Liu, K., Kang, G., Zhang, N., & Hou, B. (2018). Breast cancer classification based on fully-connected layer first convolutional neural networks. IEEE Access, 6, 23722-23732. https://doi.org/10.1109/access.2018.2817593
- Loey, M., Manogaran, G., Taha, M. H. N., & Khalifa, N. E. M. (2021b). A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement, 167, 108288. https://doi.org/10.1016/j.measurement.2020.108288
- Mukherjee, S., Boral, S., Siddiqi, H., Mishra, A., & Meikap, B. C. (2021). Present cum future of SARS-CoV-2 virus and its associated control of virus-laden air pollutants leading to potential environmental threat-a global review. Journal of Environmental Chemical Engineering, 9(2), 104973. https://doi.org/10.1016/j.jece.2020.104973
- Pan, Y., & Zhang, L. (2021). Dual attention deep learning network for automatic steel surface defect segmentation. Computer-Aided Civil and Infrastructure Engineering.
- Qi, C., Zhang, J., Jia, H., Mao, Q., Wang, L., & Song, H. (2021). Deep face clustering using residual graph convolutional network. Knowledge-Based Systems, 211, 106561. https://doi.org/10.1016/j.knosys.2020.106561
- Ren, Y., Huang, J., Hong, Z., Lu, W., Yin, J., Zou, L., & Shen, X. (2020). Image-based concrete crack detection in tunnels using deep fully convolutional networks. Construction and Building Materials, 234, 117367. https://doi.org/10.1016/j.conbuildmat.2019.117367
- Ryumina, E., Ryumin, D., Ivanko, D., & Karpov, A. (2021). A NOVEL METHOD FOR PROTECTIVE FACE MASK DETECTION USING CONVOLUTIONAL NEURAL NETWORKS AND IMAGE HISTOGRAMS. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
- Saadat, S., Rawtani, D., & Hussain, C. M. (2020). Environmental perspective of COVID-19. Science of the Total Environment, 728, 138870. https://doi.org/10.1016/j.scitotenv.2020.138870
- Sanz, H., Valim, C., Vegas, E., Oller, J. M., & Reverter, F. (2018). SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics, 19(1), 1-18 https://doi.org/10.1186/s12859-017-2006-0