DOI QR코드

DOI QR Code

Risk Assessment of Smoke Generated During Combustion for Some Wood

일부 목재의 연소 시 발생되는 연기의 위험성 평가

  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University) ;
  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과) ;
  • 진의 (강원대학교 소방방재연구센터)
  • Received : 2022.06.14
  • Accepted : 2022.07.03
  • Published : 2022.08.10

Abstract

In this study, Chung's equations 1, 2, and 3 were extended to standardize smoke safety rating evaluation in case of fire, and Chung's equations-V, smoke performance index-V, and smoke growth index-V were calculated. Five types of wood were selected and their smoke indices were measured using the cone calorimeter method according to ISO 5660-1. The smoke risk was graded by the smoke risk index-VI according to Chung's equation-VI. Smoke risk index-VI increased in the order of PMMA (1) ≈ maple (1.01) < ash (1.57) < needle fir (4.98) < paulownia (46.15) < western red cedar (106.26). It was predicted that maple and ash had the lowest smoke risk, and paulownia and western red cedar had the highest. The five samples' CO mean production rate (COPmean) was 0.0009~0.0024 g/s, indicating that these woods were incompletely burned than the polymethyl methacrylate (PMMA) reference material. Regarding the smoke properties of the chosen woods, the smoke performance index-V (SPI-V) increased as the bulk density increased, and the smoke risk index-VI (SRI-VI) decreased.

본 연구에서는 화재 시 연기안전 등급 평가를 표준화하기 위해 Chung's equations 1, 2와 3을 확장하여 Chung's equations-V인 연기성능지수-V와 연기성장지수-V를 산정하였다. 5종류의 목재를 선별하여 ISO 5660-1의 규격에 의한 콘칼로리미터(cone calorimeter)법으로 연기지수들을 측정하였다. Chung's equation-VI에 따라 연기위험성지수-VI에 의한 연기위험성을 등급화 하였다. 연기위험성지수-VI는 PMMA(1) ≈ 단풍나무(1.01) < 물푸레나무(1.57) < 전나무(4.98) < 오동나무(46.15) < 적삼목(106.26)의 순서로 증가하였다. 단풍나무, 물푸레나무의 연기위험성이 가장 낮고, 오동나무, 적삼목이 가장 높은 것으로 예측되었다. 시험편 5종의 일산화탄소 평균생성속도는 0.0009~0.0024 g/s으로 나타났으며, 이들 목재는 기준 물질인 polymethyl methacrylate보다 불완전연소 물질임을 나타내었다. 선정된 목재들의 연기특성은 체적밀도가 높을수록 연기성능지수-V (SPI-V)이 증가하였고, 연기위험성지수-VI (SRI-VI)가 감소하였다.

Keywords

References

  1. R. H. White and M. A. Dietenberger, Wood Handbook: Wood as an Engineering Material, Ch. 17: Fire safety, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1999).
  2. D. A. Purser, Toxic assessment of combustion products. In: P. J. DiNenno et al. (eds.). The SFPE Handbook of Fire Protection Engineering, Third ed., 83-171, National Fire Protection Association, Quincy, MA, USA (2002).
  3. M. A. Delichatsios, Smoke yields from turbulent buoyant jet flames, Fire Saf. J., 20, 299-311 (1993). https://doi.org/10.1016/0379-7112(93)90052-R
  4. ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate- part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Geneva, Switzerland (2015).
  5. B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019). https://doi.org/10.1016/j.carbon.2019.05.002
  6. L. Yan, Z. Xu, and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Prog. Org. Coat., 135, 123-134 (2019). https://doi.org/10.1016/j.porgcoat.2019.05.043
  7. T. Fateh, T. Rogaume, J. Luche, F. Richard, and F. Jabou, Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter - FTIR apparatus, J. Anal. Appl. Pyrolysis, 107, 87-100 (2014). https://doi.org/10.1016/j.jaap.2014.02.008
  8. Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018). https://doi.org/10.14478/ACE.2018.1076
  9. Y. J. Chung, E. Jin, and J. S. You, Evaluation of smoke risk and smoke risk rating for combustible substances from Fire, Appl. Chem. Eng., 32, 197-204 (2021). https://doi.org/10.14478/ACE.2021.1016
  10. A. Ernst and J. D. Zibrak, Carbon monoxide poisoning, N. Engl. J. Med., 339, 1603-1608 (1998). https://doi.org/10.1056/NEJM199811263392206
  11. R Von Burg, Toxicology update, J. Appl. Toxicol., 19, 379-386 (1999). https://doi.org/10.1002/(SICI)1099-1263(199909/10)19:5<379::AID-JAT563>3.0.CO;2-8
  12. U. C. Luft, Aviation Physiology: The Effects of Altitude in Handbook of Physiology, 1099-1145, American Physiology Society, Washington DC, USA (1965).
  13. N. Ikeda, H. Takahashi, K. Umetsu and T. Suzuki, The course of respiration and circulation in death by carbon dioxide poisoning, Forensic Sci. Int., 41, 93-99 (1989). https://doi.org/10.1016/0379-0738(89)90240-5
  14. V. Babrauskas, The cone calorimeter-a versatile bench-scale tool for the evaluation of fire properties. In: S. J. Grayson and D. A. Smith (eds.). New Technology to Reduce Fire Losses and Costs, 78-87, Elsevier Applied Science Publisher, London, UK (1986).
  15. M. M. Hirschler, Fire performance of organic polymers, thermal decomposition and chemical composition, ACS Symp. Ser., 797, 293-306 (2001).
  16. W. T. Simpso, Drying and control of moisture content and dimensional changes, Chap. 12, Wood Handbook-Wood as an Engineering Material, 1-21, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1987).
  17. J. Greener, G. Pearson and M. Cakmak, Roll-to-Roll Manufacturing: Process Elements and Recent Advances, John Wiley & Sons, Inc., NJ, USA (2018).
  18. Y. H. Hui, E. Castll-Perez, L. M. Cunha, I. Guerrero-Legarreta, H. H. Liang, Y. M. Lo, D. L. Marshall, W. K. Nip, et al., Handbook of Food Science, Technology, and Engineering, Volume 3, CRC press, NW, USA (2006).
  19. J. S. You and Y. J. Chung, Rating evaluation of fire risk associated with plastics, Fire Sci. Eng., 35, 9-15 (2021).
  20. L. Yimin, B. Yao, and J. Qin, Preliminary burning tests on PVC fires with water mist, Polym. Test., 24, 583-587 (2005). https://doi.org/10.1016/j.polymertesting.2005.02.010
  21. E. Jin and Y. J. Chung, Assessment of fire risk rating of wood species in fire event, Appl. Chem. Eng., 32, 423-430 (2021). https://doi.org/10.14478/ACE.2021.1051
  22. F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability, Chap. 8. In: E. A. Turi (ed.) Thermal Characterization of Polymeric Materials, Elsevier, New York, USA (1981).
  23. L. Tsantaridis, Reaction to Fire Performance of Wood and Other Building Products, PhD Dissertation, KTH-Royal Institute of Technology, Stockholm, Sweden (2003).
  24. M. J. Spearpoint and J. G. Quintiere, Predicting the piloted ignition of wood in the cone calorimeter using an integral model - effect of species, grain orientation and heat flux, Fire Saf. J., 36, 391-415 (2001). https://doi.org/10.1016/S0379-7112(00)00055-2
  25. J. Gray, G. J. Duggan, S. J. Grayson, and S. Kummar, New Fire Classifications and Fire Test Methods for the European Railway Industry, Interscience Communications Ltd., UK (2015).
  26. J. S. Bermejo, L. G. Rovira, and R. Fernandez, Fire-retardant performance of intumescent coatings using halloysites as a novel fire-retardant additive, Jacobs J. Nanomed. Nanotechnol., 1, 1-9 (2015).