DOI QR코드

DOI QR Code

Experimental Study on Reduction of Nitrogen-Containing Compounds Contained in Crude Methylnaphthalene Oil by Solvent Extraction (I): Reduction of Nitrogen-Containing Compounds Contained in Model Crude Methylnaphthalene Oil of 5 Components System

용매 추출에 의한 조제 메틸나프탈렌유에 함유된 함 질소화합물의 저감에 관한 실험적 연구(I): 5성분계 모델 조제 메틸나프탈렌유에 함유된 함 질소화합물의 저감

  • Kang, Ho-Cheol (Environmental Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Su Jin (Department of Chemical Engineering, Chungwoon University)
  • 강호철 (한국화학연구원 환경자원연구센터) ;
  • 김수진 (청운대학교 화학공학과)
  • Received : 2022.05.25
  • Accepted : 2022.06.28
  • Published : 2022.08.10

Abstract

The reduction of nitrogen-containing compounds (NC) containing the model crude methylnaphthalene oil (CMNO) of 5 compounds system was experimentally studied by solvent extraction. The model CMNO consisting of 3 kinds of NC including quinolone (QU), iso-quinoline (IQU), indole(IN) and 2 kinds of bicyclic aromatic compounds such as 1-methylnaphthalene (1MNA), 2-methylnaphthalene (2MNA) as raw materials, as well as the aqueous solution of formamide as a solvent, were used. The increase in the volume fraction of water to the solvent at the initial state (yw,0) sharply decreased, but the distribution coefficient and the yield of NC conversely increased the selectivity of NC based on 2MNA, and an increase in the volume fraction of solvent to feed (S/F) simultaneously increased the distribution coefficient, yield and selectivity of NC. The yields of QU, IQU and IN under constant conditions (yw,0 = 0.1, S/F = 1, equilibrium temperature 303 K) were 30%, 31% and 10%, respectively, and selectivity was 15, 15 and 20, respectively. From the excellent yield and selectivity of NC, the formamide extraction method of this study was expected as a method for reducing the NC contained in the model CMNO.

용매 추출에 의해 5성분계 모델 조제 메틸나프탈렌유(CMNO)에 함유된 함 질소화합물(NC)의 저감을 실험적으로 검토했다. 원료로서는 3종류의 NC [퀴놀린(QU), 이소퀴놀린(IQU), 인돌(IN)]과 2종류의 2환 방향족화합물[1-메틸나프탈렌(1MNA), 2-메틸나프탈렌(2MNA)]로 구성된 5성분계 모델 CMNO를, 용매로서는 포름아미드 수용액을 각각 사용했다. 초기 용매에 함유된 물의 체적분율(yw,0)의 증가는 NC의 분배계수와 수율을 급격히 감소시켰으나, 역으로 2MNA을 기준한 NC의 선택도를 증가시켰으며 용매/원료의 체적분율(S/F)의 증가는 NC의 분배계수, 수율과 선택도를 동시에 증가시켰다. 일정한 조건(yw,0 = 0.1, S/F = 1, 평형온도 303 K)하에서 얻어진 QU, IQU과 IN의 수율은 30%, 31%와 40%를, 선택도는 15, 15, 20을 각각 보였다. 우수한 NC의 수율과 선택도로부터 본 연구의 포름아미드 추출법은 모델 CMNO에 함유된 NC의 저감법으로 기대되었다.

Keywords

Acknowledgement

본 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2020R1I1A3061492).

References

  1. K. Sakanishi, H. Obata, I. Mochida, and T. Sakaki, Removal and recovery of quinoline bases from methylnaphthalene oil in a semiconinuous supercritical CO2 separation apparatus with a fixed bed of supported aluminum sulfate, Ind. Eng. Chem. Res., 34, 4118-4124 (1995). https://doi.org/10.1021/ie00038a056
  2. S. J. Kim, Upgrading of wash oil through reduction of nitrogen-containing compounds, Processes, 9, 1869-1877 (2021). https://doi.org/10.3390/pr9111869
  3. R. Egashira and M. Nagai, Separation of nitrogen heterocyclic compounds contained in coal tar absorption oil fraction by solvent extraction, J. Jpn. Petrol. Inst., 43, 339-345 (2000). https://doi.org/10.1627/jpi1958.43.339
  4. R. Egashira and C. Salim, Solvent extraction of nitrogen heterocyclic compounds contained in coal tar absorption oil fraction - improvement of separation performance by addition of aluminum chloride to solvent-, J. Jpn. Petrol. Inst., 44, 178-182 (2001). https://doi.org/10.1627/jpi1958.44.178
  5. S. J. Kim and Y. J. Chun, Separation of nitrogen heterocyclic compounds from model coal tar fraction by solvent extraction, Sep. Sci. Technol., 40, 2095-2109 (2005). https://doi.org/10.1081/SS-200068488
  6. S. J. Kim, H. C. Kang, Y. S. Kim, and H. J. Jeong, Liquid membrane permeation of nitrogen heterocyclic compounds contained in model coal tar fraction, Bull. Korean Chem. Soc., 31, 1143-1148 (2010). https://doi.org/10.5012/bkcs.2010.31.5.1143
  7. S. J. Kim, Y. J. Chun, and H. J. Jeong, Separation and recovery of indole from model coal tar fraction by batch cocurrent 5 stages equilibrium extraction, J. Korean Ind. Eng. Chem., 18, 168-172 (2007).
  8. K. Ukegawa, A. Matsumura, Y. Kodera, T. Kondo, T. Nakayama, H. Tanabe, S. Yoshida, and Y. Mito, Solvent extraction of nitrogen compounds from a coal tar fraction (Part I) Effect of extraction conditions on the extraction rate and the selectivities of nitrogen compounds, J. Jpn. Petrol. Inst., 33, 250-254 (1990). https://doi.org/10.1627/jpi1958.33.250
  9. Y. Kodera, K. Ukegawa, Y. Mito, M. Komoto, E. Ishikawa, and T. Nagayama, Solvent extraction of nitrogen compounds from coal liquids, Fuel, 70, 765-769 (1991). https://doi.org/10.1016/0016-2361(91)90076-M
  10. D. Xu, M. Zhang, J. Gao, L. Zhang, S. Zhou, and Y. Wang, Separation of heterocyclic nitrogen compounds from coal tar fractions via ionic liquids: COSMO-SAC screening and experimental study, Chem. Eng. Commun., 206, 1199-1217 (2019). https://doi.org/10.1080/00986445.2018.1552855
  11. T. Jiao, X. Zhuang, H. He, L. Zhao, C. Li, H. Chen, and S. Zhang, An ionic liquid extraction process for the separation of indole from wash oil, Green Chem., 17, 3783-3790 (2015). https://doi.org/10.1039/C5GC00081E
  12. L. Zhang, D. Xu, J. Gao, S. Zhou, L. Zhao, and Z. Zhang, Extraction and mechanism for the separation of neutral N-compounds from coal tar by ionic liquids, Fuel, 194, 27-35 (2017). https://doi.org/10.1016/j.fuel.2016.12.095
  13. I. Uemasu, Effect of methanol-water mixture solvent on concentration of indole in coal tar using β-cyclodextrin as complexing agent, J. Jpn. Petrol. Inst., 34, 371-374 (1991). https://doi.org/10.1627/jpi1958.34.371
  14. I. Uemasu and T. Nakayama, Concentration of indole in coal tar using α-cyclodextrin as the host for inclusion complexation, J. Inclus. Phenom. Mol., 7, 327-331 (1989). https://doi.org/10.1007/BF01076986
  15. I. Mochida, Y. Q. Fei, and K. Sakanishi, Capture and recovery of basic nitrogen species in coal tar pitch, using nickel sulfate as adsorbent, Chem. Lett., 515-518 (1990).
  16. K. Sakanishi, H. Obata, I. Mochida, and T. Sakaki, Capture and recovery of indole from methylnaphthalene oil in a coninuous supercritical CO2 extraction apparatus over a fixed bed of anion-exchange resin, Ind. Eng. Chem. Res., 35, 335-337 (1996). https://doi.org/10.1021/ie950284+