DOI QR코드

DOI QR Code

A Comparative Study of the Degradation of the Erionyl Navy R by Different Oxidation Processes: Chemical, Fenton and Fenton-like

  • Belaid, Kumar Djamal (Department of Pharmacy, Faculty of Medicine, Djillali Liabes University) ;
  • Elhorri, Abdelkader M. (Department of Chemistry, Faculty of Exact Sciences and Informatics, Hassiba BenBouali University of Chlef) ;
  • Mered, Yassine (Department of Pharmacy, Faculty of Medicine, Djillali Liabes University) ;
  • Hichem, Ellali (Department of Chemistry, Faculty of Exact Sciences Djillali Liabes University)
  • Received : 2022.05.30
  • Accepted : 2022.07.18
  • Published : 2022.08.10

Abstract

The oxidative degradation performance of the Erionyl Navy R dye was studied in this article. The investigation mainly focused on a comparative study between chemical oxidations by sodium hypochlorite (NaClO) and hydrogen peroxide (H2O2), and catalytic oxidations including the Fenton (Fe2+-H2O2) and Fenton-Like (Fe2+/ Fe3+/Co2+/ Mn2+-H2O2) or modified Fenton-like (Fe2+/ Fe3+ -NaClO) reactions. A discoloration and degradation of the Erionyl Navy R occurred after 30 minutes, which varies according to the oxidation system involved; 31%, 54%, <20%, 95%, and >96% losses were observed for Co2+-H2O2, Mn2+-H2O2, Fe2+-NaClO, Fe3+-NaClO), and Fe2+-H2O2 and Fe3+-H2O2, respectively.

Keywords

Acknowledgement

The authors wish to thank the Laboratory of Materials and Reactive Systems (LMRS) and the Chemistry Department of the Djillali Liabes University of Sidi Bel-Abbes for the provision of research facilities and space to undertake this study.

References

  1. M. Behera, J. Nayak, S. Banerjee, S. Chakrabortty, and S. K. Tripathy, A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach, J. Environ. Chem. Eng., 9, 105277 (2021). https://doi.org/10.1016/j.jece.2021.105277
  2. J. Sharma, S. Sharma, and V. Soni, Classification and impact of synthetic textile dyes on Aquatic Flora: A review, Reg. Stud. Mar. Sci., 45, 101802 (2021).
  3. C. Zhang, H. Chen, G. Xue, Y. Liu, S. Chen, and C. Jia, A critical review of the aniline transformation fate in azo dye wastewater treatment, J. Clean. Prod., 321, 128971 (2021). https://doi.org/10.1016/j.jclepro.2021.128971
  4. Y. Zhang, K. Shaad, D. Vollmer, C. Ma, Treatment of textile wastewater using advanced oxidation processes-a critical review, Water, 13, 3515 (2021). https://doi.org/10.3390/w13243515
  5. R. Al-Tohamy, S. S. Ali, F. Li, K. M. Okasha, Y. A.-G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, and J. Sun, A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicol. Environ. Saf., 231, 113160 (2022). https://doi.org/10.1016/j.ecoenv.2021.113160
  6. S. Mansour, S. Knani, R. Bensouilah, and Z. Ksibi, Wastewater problems and treatments. In: A. Figoli, Y. Li, and A. Basile (eds.). Current Trends and Future Developments on (Bio-) Membranes-Membranes in Environmental Applications, 151-174, Elsevier, Amsterdam, (2020).
  7. S. Samsami, M. Mohamadizaniani, M.-H. Sarrafzadeh, E. R. Rene, and M. Firoozbahr, Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives, Process Saf. Environ. Prot., 143, 138-163 (2020). https://doi.org/10.1016/j.psep.2020.05.034
  8. Y.-C. Yang, S.-S. Zeng, Y. Ouyang, L. Sang, S.-Y. Yang, X.-Q. Zhang, Y-Y. Huang, J. Ye, M-T. Xiao, and N. Zhang, An intensified ozonation system in a tank reactor with foam block stirrer: Synthetic textile wastewater treatment and mass transfer modeling, Sep. Purif. Technol., 257, 117909 (2021). https://doi.org/10.1016/j.seppur.2020.117909
  9. R. G. Saratale, S. Sivapathan, G. D. Saratale, J. R. Banu, and D.-S. Kim, Hydroxamic acid mediated heterogeneous Fenton-like catalysts for the efficient removal of Acid Red 88, textile wastewater and their phytotoxicity studies, Ecotoxicol. Environ. Saf., 167, 385-395 (2019). https://doi.org/10.1016/j.ecoenv.2018.10.042
  10. J. Behin, A. Akbari, M. Mahmoudi, and M. Khajeh, Sodium hypochlorite as an alternative to hydrogen peroxide in Fenton process for industrial scale, Water Res., 121, 120-128 (2017). https://doi.org/10.1016/j.watres.2017.05.015
  11. S. K. Patel, S. G. Patel, G. V. Patel, Degradation of Reactive Dye in Aqueous Solution by Fenton, Photo-Fenton Process and Combination Process with Activated Charcoal and TiO2, Proc. Natl. Acad. Sci. India - Phys. Sci., 90, 579-591 (2020). https://doi.org/10.1007/s40010-019-00618-3
  12. S. K. Ling, S. Wang, and Y. Peng, Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate, J. Hazard. Mater., 178, 385-389 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.091
  13. S. A. Wang, Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigm., 76, 714-720 (2008). https://doi.org/10.1016/j.dyepig.2007.01.012
  14. X. Fan, H. Hao, Y. Wang, F. Chen, J. Zhang, Fenton-like degradation of nalidixic acid with Fe3+/H2O2, Environ. Sci. Pollut. Res., 20, 3649-3656 (2012). https://doi.org/10.1007/s11356-012-1279-0