
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022 
 

 

 

328

Manuscript received August 5, 2022 
Manuscript revised August 20, 2022 
https://doi.org/10.22937/IJCSNS.2022.22.8.41 

 

Message Security Level Integration with IoTES: A Design Dependent 
Encryption Selection Model for IoT Devices 

Matasem Saleh1†, NZ Jhanjhi2†, Azween Abdullah3† and Raazia Saher4†† 

1matasemsaleh@gmail.com, 2noorzaman.jhanjhi@taylors.edu.my,  3azween.abdullah@taylors.edu.my 
†School of Computer Science (SCE), Taylor's University, Subang, Malaysia 

4raaziasaher@gmail.com 
††College of Computer Science and Information Technology (CCSIT), King Faisal University, Al-Hassa. Saudi Arabia 

 
Summary 
The Internet of Things (IoT) is a technology that offers lucrative 
services in various industries to facilitate human communities. 
Important information on people and their surroundings has been 
gathered to ensure the availability of these services. This data is 
vulnerable to cybersecurity since it is sent over the internet and 
kept in third-party databases. Implementation of data encryption 
is an integral approach for IoT device designers to protect IoT 
data. For a variety of reasons, IoT device designers have been 
unable to discover appropriate encryption to use. The static 
support provided by research and concerned organizations to 
assist designers in picking appropriate encryption costs a 
significant amount of time and effort. IoTES is a web app that 
uses machine language to address a lack of support from 
researchers and organizations, as ML has been shown to improve 
data-driven human decision-making. IoTES still has some 
weaknesses, which are highlighted in this research. To improve 
the support, these shortcomings must be addressed. This study 
proposes the "IoTES with Security" model by adding support for 
the security level provided by the encryption algorithm to the 
traditional IoTES model. We evaluated our technique for 
encryption algorithms with available security levels and compared 
the accuracy of our model with traditional IoTES. Our model 
improves IoTES by helping users make security-oriented 
decisions while choosing the appropriate algorithm for their IoT 
data. 
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1. Introduction 

IoT is a rapidly-developing technology, with Statista 
projecting over 75.44 billion "things" to be Internet-
connected by 2025 1  [1]. It implies billions of physical 
devices worldwide with Internet connectivity for data-
gathering and sharing. This advancement is induced by 
affordable computer chip production and the advent of 
communication technology [2]. The Internet proves 
instrumental in connecting actual contexts with digital ones 
and catalyzing technological evolution through smaller, 
more powerful, affordable embedded computers (IoT 

 
1 https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ 

devices). The Internet of Things (IoT) constitutes various 
heterogeneous devices following environmental disparities 
for deployment purposes. Even though IoT devices entail 
sensors that capture and assess information from the 
surrounding environment to be further analyzed in remote 
locations, the IoT devices share many similar attributes 
despite distinct variations and diverse elements. For 
example, all IoT devices aim toward data-capturing and 
sharing with restricted resource capacities (computational 
power, memory size, and energy) [3-5]. These devices are 
incorporated into various applications following their 
capacity to be connected to the internet and controlled 
remotely. Most IoT applications and devices have been 
deployed across multiple industries involving hospitals, 
travel, smart homes, and engineering. 

Given that resource constraints inevitably limit their 
software, such installations should be lightweight to 
facilitate IoT devices and resolve the abovementioned 
restrictions. The IoT devices are susceptible to the risks 
potentially encountered by any Internet-connected 
equipment as they are primarily developed for online data 
management and transmission without human aid. For 
example, data collection in smart cities with IoT devices 
primarily entails health monitoring (blood pressure, 
heartbeat, or body activity) and home automation 
(temperature and moisture details and power consumption 
patterns). 

The high demand for IoT technology and its significant 
impact on people's daily lives have regrettably garnered 
hackers' and attackers' attention to exploit and control 
devices, and the subsequent data derived from the IoT 
devices will have a significant impact on people's daily lives. 
Thus, IoT devices should be safeguarded against internal 
and external threats to mitigate adverse implications, given 
that 90% of IoT-derived data would be installed in third-
party databases in the following years  [6]. As such devices 
denote primary targets for attackers following the stored 
information type, it is vital to encrypt IoT device-generated 
messages by considering the essentiality of steadily-
accumulating account data  [7]. 
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Thus, encrypting data gathered by IoT devices is critical 
because it adds a degree of safety and instils a sense of trust 
in the IoT device's user. Unfortunately, this process is not 
straightforward, as the IoT device designer confronts 
several obstacles due to various factors. In summary, five 
factors are discussed with the reasoning in [8]. The first is 
the heterogeneous environment in which the IoT device is 
placed, and the second is the range of applications available 
within the same environment. Thirdly, the price of IoT 
components has decreased significantly in recent years, 
limiting the funds available for security research. At the 
same time, the fourth reason is that most IoT designers 
come from an embedded device background, where these 
devices operate in closed systems and lack internet access, 
and where the most effort and experience are focused on 
hardware development. The last factor is the considerable 
number of encryption algorithms, where each of them has 
its own pros and cons, which makes the selection of the 
encryption algorithm for a specific device a challenging task. 

Researchers and concerned organizations performed 
significant development to mitigate the effects of the 
aforementioned factors. The researchers extensively 
analyzed multiple encryption techniques and quantified 
their effect on various IoT device resources. On the other 
side, concerned organizations provide workshops and 
publish periodic documentation to educate designers about 
the best practices for protecting IoT devices. 

The support provided to designers by organizations 
requires a lot of effort and time. That is why there is a need 
to provide an automated solution where it can provide them 
with the necessary support with a substantially reduced 
requirement of time and effort. IoTES was developed to 
overcome these shortcomings. IoTES is a web app 
developed as part of an academic research project to 
evaluate the feasibility of applying machine learning to 
assist IoT device designers when they want to select an 
appropriate encryption algorithm with the least effect on 
their device resources. IoTES is an open-source project to 
encourage other academics to enhance its features.  

This study aims to improve the security features of 
IoTES by identifying security level deficiency in IoTES and 
providing an improved solution with enhanced security 
features. The following section analyzes the IoTES model 
with motivation for its development, structure, advantages, 
and shortcomings. In the next section, we discuss the 
potential improvement in IoTES. The next section provides 
the implementation of security level enhancement in IoTES 
using machine learning models, algorithms, and their 
evaluation. The last section concludes the paper with a 
discussion of the security level enhancement we made to 
address one of IoTES's shortcomings 

2. IoTES Model for Design Dependent 
Encryption Selection for IoT Devices 

This section explains the Model for Design Dependent 
Encryption for IoT Devices (IoTES [18]) with its 
motivation, related work and implementation details. We 
also discuss the advantages and limitations of IoTES to 
determine the possible improvement. 

2.1 Motivation 

Data privacy and security have become challenging 
given the heterogeneously increasing number of internet-
connected devices ("things"). Hence, IoT device-gathered 
data security is a pivotal and daunting study area. 
Specifically, IoT device application has facilitated the 
connection of daily things and communication among 
machines, people, and systems in the physical world [3]. 
The IoT platform, which encompasses individual-
distributed devices to gather data on their daily routines, 
places, family members, and bank accounts [9], has 
highlighted the essentiality of data encryption for high data 
integrity and confidentiality. Encryption and hash functions 
are also utilized to protect the passwords and confidential 
data embedded in IoT devices apart from significantly 
influencing system connectivity and authentication. Based 
on the primary motive underlying this study, designers who 
establish device security are static, given the versatile 
nature of IoT devices, where changes in design and 
specifications could be made for multiple contexts. For 
example, designers' security design relies on past 
knowledge or skills limited to specific physical scenarios or 
settings. As a broader range of hardware IoT device 
designs is anticipated following global advancements 
towards complete IoT-based automation, security denotes a 
primary concern for IoT networks. In other words, optimal 
encryption methods substantially impact the security 
extension for this rapidly growing network. IoTES aimed 
to recommend and establish integration between 
appropriate encryption methods and design requirements 
for high security.  
 Every IoT device entails novel architecture without IoT 
hardware standardization [10-13]. Multiple non-encrypted 
(constrained) devices have been developed as IoT devices, 
encountering limited resources[14-16]. Meanwhile, a 
considerable number of encryption methods have emerged  
[17] in line with recent research [13]. The justifications 
mentioned above render identifying appropriate encryption 
methods for multiple IoT devices challenging for IoT device 
designers and developers [13]. Many Empirical works have 
been published for IoT designers to take constructive 
measures within the IoT industry. The measures based on 
the "Security by Design Concept" by optimizing designers' 
knowledge and developing suitable IoT encryption selection 
methodologies have prompted us to structure and develop a 
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model named IoTES with all the necessary data and select 
the most appropriate encryption for every IoT device.   

2.2 Structure of IoTES  

This section explains the development phases of IoTES, 
such as experimental design, data analysis, machine 
learning model and web app development, as shown in 
Figure 1. 

2.2.1 Experimental Design 

The first step in IoTES development is building a 
dataset using the encryption algorithms and the IoT devices. 
IoTES dataset is created via a series of experiments 
including various encryption methods (28 in all) belonging 
to three distinct encryption classes: Symmetric, Asymmetric, 
and Lightweight. These encryption techniques are 
implemented in Python using standard libraries. Finally, a 
platform is developed to facilitate the testing process. Three 
single-board computers are used to evaluate these 
encryption algorithms: Raspberry Pi-3, Raspberry Pi-Zero, 
and Pocket Beagleboard. The developed platform is capable 
of encrypting the message and logging the effect of the 
encryption on device resources, such as processing power 
and time consumption. 

 

 

Fig. 1. IoTES Methodology  

2.2.2 Data Analysis and Preprocessing 

Data analysis is performed in the next phase to 
validate the data and get valuable insights. After data 
analysis, the dataset is processed through several 
preprocessing and feature engineering techniques for 
statistical significance in the machine learning model. Data 
preprocessing is an essential step in data management for 
our machine learning model and includes cleaning, 
normalization, and the change of features. The study's 
categorical features required much data manipulation, as 
predictive models perform better by converting the 
categorical data to numeric-categorical values. One hot 
encoding technique encodes the features, while the label 

encoding technique transforms the target column in IoTES. 
Data scaling is also performed for several features as the 
machine learning algorithms determine the distance 
between data. The numerical columns are scaled so that 
data ranges between [0,1]. Standard scaler is not being used 
because the best performing machine learning models are 
tree-based models, and standardization did not affect the 
results.  

After preprocessing, the data is divided into two sets, 
a train set, and a test set. We have used an 80/20 data-
splitting ratio to develop an accurate prediction model, i.e., 
80 percent of the data is used to train the model, and just 20 
percent is used to evaluate its performance. Data validation 
is performed using 25% of the training data to evaluate the 
model stability. For statistical purposes, the dataset 
included a large amount of data from many measurements 
made using a single device and encryption with the same 
settings, leading to many duplicate instances. To prevent 
data leaking from the training set to the testing set, we have 
grouped this kind of data and be exposed to the training set 
or testing set. The preprocessing steps are shown in 
Algorithm 1, and the same preprocessing steps are 
performed for the security level addition implemented in 
this paper due to the same rough dataset being used. 

 

2.2.3 Machine Learning Model Development 

The next step is to build a machine learning model 
capable of selecting an appropriate encryption algorithm 
based on various inputs. Two machine learning approaches 
are implemented for IoTES. The first approach is 
constructed using supervised learning multiclass 
classification models with the encryption's name column as 
the target. Five different supervised learning models are 
trained and tested for the target. The data is then used as 
training and testing sets to evaluate the model's 
performance. Following training and testing of the 
classification models, the results of all models are 
compared to select the most accurate model and carry it out 
to the implementation phase. The gradient boosting 
technique is selected for the final model of IoTES (the 
results of all models are published in [18]).  

The second approach is to mimic the flow of the 
experiment, where the information about the encryption 
algorithm is already known, such as the key size, block size, 
cipher type, and the device information such as processor 
type and frequency, and memory size. The unknown values 
for use are the load of the encryption algorithm on device 
resources. Therefore, the measured parameters are 
specified as the target variable. These measured parameters 
are the four features, including 'DURATION', 'CPU%', 
'PERFORMANCE', and 'MEM_USAGE%'. We use 
regression models for all four features because of 
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numerical feature values. We also use a classification 
model for 'DURATION' because it contains a broad date 
range and will improve the results if the user input is 
categorized into low or high duration. Four regression 
models and one classification model are also used for our 
proposed approach. Our proposed IoTES with security 
level is expected to have better predictions for other 
devices than those utilized in this experiment. 

2.2.4 Web-App Development 

The last stage is to make the model available to the 
community, and a web-based application is designed to 
serve the purpose. We construct a dashboard using the 
python module ipywidgets. Ipywidgets is a collection of 
interactive HTML widgets for use with Jupyter notebooks. 
It empowers the user with control over data and visualizes 
data changes on a graph. We utilize the voilà python 
package, which converts a standard HTML notebook into a 
standalone web application. The complete work, including 
codes,  models, dashboards, and datasets, is uploaded to 
GitHub and linked to a platform as a service (Heroku) that 
enables application execution on the cloud. The next step is 
to link the domain (iotes.net) to the Heroku platform and 
serve all web requests to our model using the developed 
web app. 

2.3 Advantages 

Choosing an effective encryption method for an IoT 
device requires taking several aspects into account, 
including the device's design, the capacity of its resources, 
and the encryption's consumption of those resources. 
Human decision-making based on data will diminish as the 
number of variables increases, while machine learning is a 
well-known approach for addressing such 
multidimensional issues. Therefore, IoTES apply machine 
learning to choose the appropriate encryption approach 
based on the resources available to the IoT device. IoTES 
is designed as a web application so that designers can 
readily use it. It generates suggestions based on the device 
specification and the designer's requirements. By using 
IoTES, designers will save significant time and effort in 
picking a suitable encryption method for their products. 
The IoTES does not need any previous understanding of 
encryption. 

2.4 Limitations 

There are some limitations present in IoTES which 
are described in this section. 

Platform Testing Accuracy: IoTES platform incorporates 
different types of profilers, yet the memory profiler 
provides inaccurate readings, and the deployment of a 
better profiler is required to have better readings. 

IoT Device Variety: IoTES uses specific primary devices 
for generating the dataset due to the absence of an available 
dataset. Nevertheless, the proposed model could not be 
deployed on all IoT devices following the diversity of 
current IoT devices. 

Limitation of Encryption Algorithms: Multiple 
encryption schemes are identified, each having unique 
implications on different resource availability given the 
broad device diversity. Furthermore, the number of 
available encryption algorithms continues to expand daily. 
IoTES does not include all of them in the training or testing 
model following various methods. 

Dataset Limitation: We could not produce a 
comprehensive and generalized dataset that entailed more 
devices and encryption methods towing to the two 
limitations mentioned earlier. Regardless, this work is 
implementable with improvements for model 
generalization. 

Extended Features: Multiple features encompassing 
temperature, operating system type, power consumption, or 
message encryption frequency that could significantly 
influence IoT device resources are beyond the current study 
scope and could be addressed in the future version. 

Encryption Algorithm Security Level: The dataset in 
IoTES does not include the security level provided by each 
encryption algorithm which is necessary for the designer to 
build a better decision on encryption selection.  

3. IoTES with Security 

The primary goal of IoTES is to strengthen security by 
encrypting messages inside IoT devices. This goal can be 
achieved by encouraging IoT device designers to adopt an 
encryption technique. The motivation is provided by 
simplifying the process of selecting an appropriate 
encryption algorithm while maintaining the load within the 
required limit. Since IoTES recommends several suitable 
encryption algorithms to the user based on their inputs and 
security is the main objective for selecting an appropriate 
encryption algorithm, the security level provided by the 
encryption algorithm has to be provided with it to 
strengthen the user decision and make it security-oriented. 
The current version of IoTES does not incorporate the 
security level information, which is one of the 
shortcomings of IoTES stated in the previous section. The 
following section explains the steps to add this important 
improvement to IoTES. 
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4. Methodology 

The method used to achieve the goal of including the 
security level provided by each encryption technique in 
IoTES involves finding the availability of security 
information, adding security level information to the 
dataset, preprocessing the dataset, training, deploying and 
evaluating the model, which is discussed in the following 
section. 

4.1 Collecting Encryption Security Information 

The first step for including encryption algorithm 
security levels is to survey the literature and find the 
security level of the encryption algorithms included in 
IoTES. The security levels of the encryption algorithms are 
shown in Table 1. The security level for all the encryption 
algorithms included in IoTES is unavailable. Therefore, a 
new model named 'IoTES with Security' is developed along 
with the previously available version of IoTES.  

Table 1:  Security Level Provided By Different Encryption Algorithms used In IoTES 

Cryptosystem Operation Key Size 
(bit)/Round 

Strength 
Level 

Description 
 

Comparison 
to 

RSA 

Status Through 
2030 

[19] AES Encryption(sym) 128/10 128 Medium Security 3072 Acceptable 

192/12 192 Medium- High 
Security 

7680 Acceptable 

256/14 256 High Security 15360 Acceptable 

[20] DES Encryption(sym) 56/16 64 Weak Security 640 െ 1024 Avoid 

[19, 21] 3DES 
(TDES) 

Encryption(sym) 112/3 ൈ 16 80 Weak Security  1024 Legacy 

168/3 ൈ 16 112 Medium Security  2048 Legacy 

[22, 23] ECDSA Key exchange 
& 

Authentication 

160 – 223 80 Weak Security 1024 Legacy 

224 – 255 112 Medium Security 2048 Acceptable 

256 – 383 128 Medium Security 3072 Acceptable 

384– 511 192 Medium- High 
Security 

7680 Acceptable 

512 ൅ 256 High Security 15360 Acceptable 

[19] RSA Encryption(asym) 
 
 

Size of modulus  
𝑁 ൌ 𝑝. 𝑞 

1024 ൑ 80 Weak Security െ Legacy 

2048 112 Medium Security െ Acceptable 

3072 128 Medium Security  െ Acceptable 

7680 192 Medium- High െ Acceptable 

15360 256 High Security െ Acceptable 

[24, 25] Rabin Signature (asym) 3072 128  Medium Security 3072 Acceptable 

7680 192 Medium- High 
Security 

7680 Acceptable 

15360 256 High Security 15360 Acceptable 

[26] Rabbit  128 128 Medium Security 3072 Acceptable 

[27-29] ChaCha 
 

No attack on 
chacha [28] 

Encryption(sym) 128/6 107 Medium Security 1024 െ 2048 Legacy 

256/6 139 Medium Security 3072 െ 7680 Acceptable 

128/7 128 Medium Security 3072 Acceptable 

256/7 248 High Security 768 െ 15360 Acceptable 

256/8 256 High Security 15360 Acceptable 

256/9 256 High Security 15360 Acceptable 

[30] Fernet Encryption & 
authentication (sym) 

AES 128 CBC 

256 128 Medium Security 3072 Acceptable 

[31, 32] ARC2 Encryption(sym) 𝑏𝑟𝑜𝑘𝑒𝑛  Weak Security െ Avoid 

[27-29, 33] Salsa 
 

No attack on 

Encryption(sym) 128/7 111 Medium Security 1024 െ 2048 Legacy 

256/7 151 Medium Security 3072 െ 7680 Acceptable 

128/8 128 Medium Security 3072 Acceptable 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022 
 

 
 

333

Salsa [28] 256/8 251 High Security 768 െ 15360 Acceptable 

128/9 128 Medium Security 3072 Acceptable 

256/9 256 High Security 15360 Acceptable 

128/10 128 Medium Security 3072 Acceptable 

256/10 256 High Security 15360 Acceptable 

128/11 128 Medium Security 3072 Acceptable 

256/11 256 High security 15360 Acceptable 

128/12 128 Medium Security 3072 Acceptable 

256/12 256 High Security 15360 Acceptable 

128/20 128 Medium Security 3072 Acceptable 

256/20 256 High Security 15360 Acceptable 

[34-36] CAST Encryption(sym) 64 48 Weak Security 480 Avoid 

128/5 31.4 Weak Security ൑ 480 Avoid 

128/16 44.2 Weak Security ൑ 480 Avoid 

256 256 High Security 15360 Acceptable 

1024 1024 High Security ൒ 15360 Acceptable 

[37] Ed25519 Signature (asym) 256 128 Medium Security 3072 Acceptable 

[38-40] Sphincs Integrity  256 256 High Security 15360 Acceptable 

[41] Schmidt-
Samoa 

Encryption(asym)  Like Rabin െ െ െ െ 

[42] Lamport Integrity 256 128 Medium Security 3072 Acceptable 

[43] Present Encryption(sym) 80/26 68,2 Weak Security 640 െ 1024  Avoid 

80/27 72 Weak Security 640 െ 1048 Avoid 

80/28 77,4 Weak Security 640 െ 1048 Avoid 

128/28 122 Medium Security 2048 െ 3072 Acceptable 

[44] Clefia Encryption(sym) 128 127.44 Medium Security 2048 െ 3072 Acceptable 

[31, 45-47] 
Simon 

Encryption 
(sym) 

 
 
 
 

Block 
Size 

 

32 64/24 63 Weak Security 640 െ 1024 Avoid 

48 72/24 56 Weak Security 640 Avoid 

48 96/25 80 Weak Security 1024 Legacy 

64 96/32 63 Weak Security 640 െ 1024 Avoid 

96 96/37 88 Weak Security 1024 െ 2048 Legacy 

64 128/31 120 Medium Security 2048 െ 3072 Acceptable 

128 128/49 120 Medium Security 2048 െ 3072 Acceptable 

96 144/38 136 Medium Security 3072 െ 3072 Acceptable 

128 192/51 184 Medium Security 3072 െ 3072 Acceptable 

128 256/24 248 High Security 307 െ 15360 Acceptable 

[31, 48] Skinny Encryption(sym) 128/36 51.95 Weak Security 480 െ 640 Avoid 

128/40 52 Weak Security 480 െ 640 Avoid 

256 256 High Security 15360 Acceptable 

284 284 High Security 307 െ 15360 Acceptable 

[49] TEA Encryption(sym) 128 121.5 Medium Security 2048 െ 3072 Acceptable 

[50] XTEA Encryption(sym) 128/36 126,44 Medium Security 2048 െ 3072 Acceptable 

128/64 128 Medium Security 3072 Acceptable 

[51] XXTEA Encryption(sym) 128/64 ൑ 128 Medium Security 2048 െ 3072 Acceptable 

 

This message security level integration model will work for 
the security issues addressed in the [52-55], and also for the 

issues at the design level [56]. Further, this can help the 
IoT-based devices and software for different domain 
applications such as [56-58]. This can help further with any 
different IoT-based designs.  
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4.2 Adding Security Level to Dataset 

All the steps of data preprocessing are provided in 
Algorithm 1. We start with processing the data and split the 
dataset into four categories, i.e., Device Parameters, 
Algorithm Parameters, Measure Parameters and other 
parameters. Next, we remove any unnecessary data which is 
found in the 'other parameters' category. The Performance 
column has a wide range of values due to the usage of 
lightweight algorithms with very high performance. Any 
encryption algorithm with performance higher than 400 is 
considered as good. All other numerical columns are 
normalized. For the traditional approach, 'TYPE' and 
'CIPHER TYPE' columns are removed for dimensionality 
reduction of data. The traditional IoTES model includes all 
the 28 encryption algorithms, and "IoTES with Security" 
include only those encryption algorithms for which their 
security level is known. Therefore, for adding security level 
information to the traditional IoTES model, we add the 
security level information in a new column, remove the 

algorithms not having their security level, and encode it 
with the label encoder technique. We remove all the digital 
signature algorithms as the security level of only two such 
algorithms is available. 

For the "IoTES with Security" model, we do not need to 
add the security level in the dataset as we will use the 
security level from the user dashboard. We take measure 
variables as target variables and split data into independent 
and target variables for each target variable. The categorical 
data is coded using the one-hot-encoding technique. The 
final step in data preprocessing is to avoid data leakage 
from train to test set. Because our data consists of repeated 
experimental tests, it includes many repeated and similar 
data. If we do not separate this kind of data properly, we 
will end with similar data in the training and testing set 
where the test results will not be reliable, and our model 
will not perform as expected in production. Therefore, 
duplicate data is added to the same group to avoid 
duplication between the train and test data. 

 
 

 

Algorithm 1 Data Preprocessing 
1: Split Parameters into categories 
2: Device Parameters  ←  [' DEVICE',' CPU MODEL NAME',' CPU ARCHITECTURE',' CPU COUNT', 

' TOTAL CPU MAX (MHZ)'] 
3: Algorithm Parameters   ← [' TYPE',' ALGORITHM',' FUNCTIONALITY',' CIPHER TYPE',' KEY SIZE', 

' BLOCK SIZE',' MESSAGE SIZE'] 
4: Measure Parameters  ← [' DURATION (SEC)',' CPU%',' PERFORMANCE',' MEM USAGE (%)'] 
5: Other Parameters  ← ['RANGE_DURATION (SEC)'….] 
2: for ALL Data do 
3:  if  !Data.equalTo(Device) OR  !Data.equalTo(Algorithm) OR  !Data.equalTo(Measure)  then 
4:  remove DATA 
5:  end if 
6: end  for 
7:  PERFORMANCE ← 400 
8:  numericalcolumns scaled to [0,1] range 
9:  if  Model.equalTo(Traditional Approach)  then 
10:  remove  Model.′TYPE ′ 
11:  remove Model. ′CIPHER TYPE ′ 
12: end  if 
13:  if  Model.equalTo(Traditional Approach) and Model.contains(SECURITY  DATA)  then 
14:  remove  Model.′TYPE ′ 
15:  remove Model. ′CIPHER TYPE ′ 
16:  Add  SECURITY   INFORMATION 
17:  LabelEncoder encodes SECURITY  INFORMATION 
18:  for ALL Algorithms do 
19:  if  !Algorithm.contains(SECURITY  INFORMATION ) then 
20:  remove  Algorithm 
21:  end  if 
22:  end  for 
23:  for ALL Algorithms do 
24:  if  Algorithm.contains(DIGITAL  SIGNATURE)  then 
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25:  remove  Algorithm 
26:  end  if 
27:  end  for 
28: end  if 
29:    if  Model.equalTo(New  Approach)  then 
30:  Split DATA  to  Independent  variables  and  Target  variables 
31:  Target  variables  ← Measure Parameters 
32: end  if 
33:   OneHotEncoder encodes Categorical  Variables 
34:  group  MEASUREMENTS  from  DATA  
35:  Split  groups  to  Training  and Test 
36: Save Traditional Approach Training Files  
37: Save Traditional Approach Test Files 
38: Save New Approach Training Files 
39:  Save New  Approach  Test  Files 

4.3 Training model 

As we have seen in the previous step, the traditional 
model contains two datasets. The first dataset contains 28 
encryption algorithms without including the security 
strength of these algorithms. The second dataset includes 15 
encryption algorithms along with the security level of each 
of those algorithms. The dataset is split into two sets for the 
training and testing of both models. We split data into 
independent and target variables where the target column is 
the algorithm column. We train six different models to 
compare their results and carry the best-performed model. 
Therefore, we plot the confusion matrix and classification 
report for comparison purposes. All the training and testing 
steps of the traditional classification approach IoTES are 
described in Algorithm 2. 

We created four regression models and one 
classification model for the "IoTES with Security" model. 
Four regression models use measure variables as target 
column i.e., 'DURATION (SEC)', 'CPU%', 
'PERFORMANCE', 'MEM USAGE (%)'). We train and test 
six machine learning algorithms for each measurement 
target to compare their result and carry out the best-
performed model to the production step. An extra 
classification model is trained and tested for 'DURATION 
(SEC)' to classify the encryption which has higher time than 
the ones having lower time, and this model is developed 
because the data of 'DURATION (SEC)' has long variations 
and the classification model improves the selection accuracy. 
The result of each model is recorded for comparison 
purposes. All the process of training and testing of the 
"IoTES with Security" model is described in Algorithm 3. 

 
Algorithm 2 Traditional Model Training and Testing 

1: Load Traditional Approach Training Files.LabelEncoder 
2: Load Traditional Approach Test Files.LabelEncoder 
3: Split DATA to Independent variables and Target variables 
4:  Target variables   ← Algorithm 
5: Classification Models ← [' Logistic Regression',' Gradient Boosting',' Decision Tree',' Random Forest',' 

XGBoost'] 
6: for ALL Traditional Approach and Traditional Approach.SecurityData do 
7: for ALL Classification Models do 
8: Build  Model 
9: Train  Model 

10: Test  Model 
11: Plot  Confusion  Matrix 
12: Extract Classification Report 
13: if CurrentModel > PreviousModel then 
14: Best  Model    ← CurrentModel 
15: end if 
16: Save  Model 
17: Save  Model.SecurityData 
18: end for 
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19: end for 
 

Algorithm 3 New Approach Model Training  

1: Load New Approach Training Files.LabelEncoder 
2: Load New Approach Test Files.LabelEncoder 
3: Models ← [' SVM',' Logistic Regression',' Decision Tree',' Random Forest',' XGBoost'] 
4: for ALL Target Variables do 
5:  for ALL Models do 
6: Build  Model 
7: Train  Model 
8: Test  Model 
9: Save  Model 

10: end for 
11: Plot  Confusion  Matrix 
12: for ALL Models do 
13: if CurrentModel > PreviousModel then 
14: Save Mosel Result 
15: Best  Model    ← CurrentModel 
16: end if 
17: end for 
18: end for 
19:   if  T arget Variables.equals(′DURATION (SEC) then 
20: Build Classification  Model  
21: Train Classification  Model  
22: Test  Classification  Model  
23: Select Model ← BestModel 
24: Build Regression Model (0.5 threshold point) 
25: Train Regression Model  
26: Test Regression Model  
27: Save Model 
28: end if 
 

4.4 Models Deployment 

The selection of all the created models is specified in 
the web app deployment. User input data widgets are 
created in three different categories. The first category is 
the Algorithm category, where the user specifies the 
algorithm type, cipher type, key size, block size, and 
message size. The second category is the Device category 
which allows the user to select all specified parameters 

based on the device. The device widgets are connected; if 
the user selects a known device, all other input widgets 
fields will be filled automatically. The third category 
contains the measured parameters, which must be specified 
by the user based on the requirement. The security level 
has been added to the new window in the web app named 
"IoTES with Security" and utilizes the machine learning 
models with the security level. For "IoTES with Security", 
the user selects all the options described above, along with 
an additional security level, as shown in Figure 3. 
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Fig. 3. IoTES Application Interface (A) without security information (B) after including security information

Measure parameters selected by the user are used as input 
to the traditional classification models. The model will 
return the top three algorithms matching the user input. The 
new approach models use device inputs as input parameters, 
and algorithm inputs are used for filtering the matching 
algorithms while the measure inputs and security level (if 
IoTES with Security is selected) input are used for sorting 

the algorithms. Euclidean distance is used to identify the 
suited algorithms by calculating scaled Euclidean distance 
between the measured + security level input values and 
model predictions. Algorithm filtering is removed if there 
is no algorithm satisfying the measure inputs. All these 
steps are explained in algorithm 4. 

 
 

Algorithm 4 Models Deployment 
1: for ALL Traditional Models, Traditional.Security Model and New Approach Model do 
2: Assess Data Path, LabelEncoder Path and Model Path 
3: end for 
4: Split InputData to Device, Algorithm and Measure 
5: for  ALL Traditional  Models and  Traditional.Security  Models 
do  
6: Select Desired Algorithm, Measure values and Device type  
7: if Model.equalTo(Traditional.Security) then 
8: Select Security values 
9: end if 
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10: end for 
11: if Model.equalTo(Traditional) then  
12: Input  ← Measure  Parameters  
13: end if 
14:   if  Model.equalTo(New  Approach)  then 
15: Desired Value  ← Measure Parameters 
16: end if 
17: for ALL Traditional Model and Traditional.Security Model do 
18: InputParameters ← Device,   Algorithm  and  Measure Parameters 
19: for ALL Predictions do 
20: Sort Predictions.Probability  then Print Prediction[0],  Prediction[1],  Prediction[2] 
21: end for 
22: end for 
23: for ALL New Approach Model do 
24: InputParameters,  Filtering,  SortingAlgorithms   ← Device,  Algorithm,  Measure Params 
25: for ALL Algorithms do 
26: Use all available key and block sizes 
27: Calculate  EuclideanDistance 
28: for ALL Target Variables do 
29: Assess  IndividualCoefficients 
30: end for 
31: Calculate  EuclideanDistance.MeasureTargetValues(Widgets, Predictions) 
32: end for 
33: Save DataSet 
34: for ALL Target Variables do 
35: Predict Value then Measure.Parameters ← Value 
36: end for 
37: if Algorithm < Requirements then 
38: Remove Algorithm 
39: end if 
40: if !(ALL Algorithms < Requirements) then 
41: Remove  Filtering 
42: end if 
43: for ALL Models do 
44: Sort Models.EuclideanDistance then Print Model[0],  Model[1],  Model[2] 
45: end for 
46: Update Widget Values 
47: end for

4.5 Models Results 

As previously indicated, the traditional approach 
consists of two datasets, one containing all 28 encryption 
algorithms but not their security levels, while the other 
dataset contains just those algorithms to which security 
levels have been included. The first dataset was 
preprocessed before being trained and tested using six 
machine learning techniques to select the best model and 
carry it out for production. The results are shown in Table 2, 

showing that Linear Regression has the lowest performance 
following the Support Vector Classifier. The tree-based 
models are performing better than the previously mentioned 
models. It is visible from Figure 2(A) that XGBoost and 
Gradient Boosting are the highest-performing models. 
Comparing traditional approach (IoTES) models with the 
"IoTES with Security" in Figure 2, we find that the Linear 
Regression and SVC have a slightly improved result due to 
the target column with fewer variables, and it has only 15 
encryption algorithms to classify as compared to 28 
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algorithms for IoTES. At the same time, the performance of 
most of the tree-based algorithms has somehow reduced 
because of an increased number of features. Nevertheless, 
XGBoost and GradientBoosting again have the highest 
performance. 

As discussed earlier, we built a separate regression 
model for each measured value for the traditional IoTES 
model. We trained and tested six different models to select 
the best among them. For CPU%, MEM%, and 
PERFORMANCE, the tree-based models performed better 
than the other. Interestingly, the decision tree and 
GradientBoosting have very close results, and we have 
adopted the GradientBoosting model. We can see the model 
result of each measured column in Table 3. We can notice 

that the Mean Absolute Error (MAE) of the DURATION 
(SEC) parameter is a high value due to the reason that the 
Duration (SEC) column has a wide range of values. The 
higher values in this column come from the heavily tested 
algorithm such as Schmidt-Samoa, precisely when it is 
tested on a Pi-Zero device. That is why we decided to use a 
classification model to classify the algorithms with more 
encryption time than those requiring less time with 0.5 
seconds as the threshold point. The training accuracy of the 
classification model is 99.8%, and the test accuracy is 
100.0%. Then we used a separate regression model for the 
algorithms with a duration of more than 0.5 and lower than 
0.5 seconds. The result of these two different regression 
models is shown in Table 4. 

Table 2: Traditional Classification Models Comparison with and Without Adding Security Level Feature 

 

 

Fig. 2. Different ML models comparison  (A) Traditional classification approach  (B) Traditional classification approach 
with security level data. 

 
Machine 
learning 
Model 

Train 
accuracy 

Test 
accuracy 

Train 
precision 

Test 
precision 

Train Recall Test Recall Train F1 
Score 

Test F1 
Score 

Traditional 
Classification 
Approach 

Linear 
Regression 

 
0.77495 

 
0.749397 0.800999 0.762203 0.745562 0.768547 0.749401 0.724557 

 
SVC 0.867203 0.855591 0.888322 0.867743 0.864948 0.877384 0.855289 0.850899 
 
XGBoost 1 0.958568 1 1 1 0.959633 0.959488 0.959282 
Decision 
Tree 0.997485 0.952534 0.997549 0.997535 0.997526 0.953678 0.953412 0.953357 
Random 
Forest 0.944366 0.925583 0.95474 0.944964 0.944172 0.939341 0.926726 0.924836 
Gradient 
Boosting 1 0.958166 1 1 1 0.959362 0.95912 0.958812 

Traditional 
Classification 
Approach with 
Algorithm 
Security Level  

Linear 
Regression 

 
0.809873 

 
0.664029 

 
0.867482 

 
0.795027 

 
0.776298 

 
0.715052 

 
0.721937 

 
0.66372 

 
SVC 

 
0.896452 

 
0.861871 

 
0.899355 

 
0.902837 

 
0.898826 

0.857903  
0.856368 

 
0.85311 

 
XGBoost 

 
1 

 
0.923741 

 
1 

 
1 

 
1 

 
0.909696 

 
0.910214 

 
0.909799 

Decision 
Tree 

 
0.998072 

 
0.920863 

 
0.998284 

 
0.998064 

 
0.998161 

 
0.907338 

 
0.910541 

 
0.908317 

Random 
Forest 

 
0.979368 

 
0.91295 

 
0.980617 

 
0.981506 

 
0.980338 

 
0.902539 

 
0.893533 

 
0.895189 

Gradient 
Boosting 

1 0.930216 1 1 1 0.92148 0.917521 0.918981 
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Table 3: New Approach Ml Models Results Comparison For All Measure Target Columns   

Table 4: Duration (Sec) Ml Models Result For Classified Data 
 Train MAE Test MAE Train MSE Test MSE 

<0.5 model 0.00399 0.00459 0.00004 0.00012 
<0.5 model 0.14234 0.33308 2.10942 12.4898 

 

5. Conclusion 

IoTES provides IoT device designers with extensive dynamic 
support to make the process of identifying appropriate encryption for 
their devices as simple as possible. This assistance is far more 
advanced than other alternatives offered by other researchers and 
organizations. However, IoTES still has some limitations identified in 
this work. One of these limitations, namely the absence of the security 
level supplied by each encryption technique, has been addressed in this 
study. In this work, we have presented the "IoTES with Security" 
model with the added support of the security level feature to IoTES. 
Evaluation of our model improves the classification accuracy with the 
added security level support of encryption algorithms. 

We still hope that all other IoTES drawbacks can be addressed as well, 
and we hope we can get the support of the research community to speed 
up the improvement process. For this purpose, all the work of building 
IoTES is available to all researchers interested in participating in the 
improvement process. Those who successfully solve one or more of the 
IoTES flaws will be listed as authors and participants on the website 
(www.iotes.net), along with their participation. 
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