
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

328

Manuscript received August 5, 2022
Manuscript revised August 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.8.41

Message Security Level Integration with IoTES: A Design Dependent
Encryption Selection Model for IoT Devices

Matasem Saleh1†, NZ Jhanjhi2†, Azween Abdullah3† and Raazia Saher4††

1matasemsaleh@gmail.com, 2noorzaman.jhanjhi@taylors.edu.my, 3azween.abdullah@taylors.edu.my
†School of Computer Science (SCE), Taylor's University, Subang, Malaysia

4raaziasaher@gmail.com
††College of Computer Science and Information Technology (CCSIT), King Faisal University, Al-Hassa. Saudi Arabia

Summary
The Internet of Things (IoT) is a technology that offers lucrative
services in various industries to facilitate human communities.
Important information on people and their surroundings has been
gathered to ensure the availability of these services. This data is
vulnerable to cybersecurity since it is sent over the internet and
kept in third-party databases. Implementation of data encryption
is an integral approach for IoT device designers to protect IoT
data. For a variety of reasons, IoT device designers have been
unable to discover appropriate encryption to use. The static
support provided by research and concerned organizations to
assist designers in picking appropriate encryption costs a
significant amount of time and effort. IoTES is a web app that
uses machine language to address a lack of support from
researchers and organizations, as ML has been shown to improve
data-driven human decision-making. IoTES still has some
weaknesses, which are highlighted in this research. To improve
the support, these shortcomings must be addressed. This study
proposes the "IoTES with Security" model by adding support for
the security level provided by the encryption algorithm to the
traditional IoTES model. We evaluated our technique for
encryption algorithms with available security levels and compared
the accuracy of our model with traditional IoTES. Our model
improves IoTES by helping users make security-oriented
decisions while choosing the appropriate algorithm for their IoT
data.

Keywords:
IoT, System Security, IoT Device Security, Cryptography,
Machine Learning, System Design

1. Introduction

IoT is a rapidly-developing technology, with Statista
projecting over 75.44 billion "things" to be Internet-
connected by 2025 1 [1]. It implies billions of physical
devices worldwide with Internet connectivity for data-
gathering and sharing. This advancement is induced by
affordable computer chip production and the advent of
communication technology [2]. The Internet proves
instrumental in connecting actual contexts with digital ones
and catalyzing technological evolution through smaller,
more powerful, affordable embedded computers (IoT

1 https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

devices). The Internet of Things (IoT) constitutes various
heterogeneous devices following environmental disparities
for deployment purposes. Even though IoT devices entail
sensors that capture and assess information from the
surrounding environment to be further analyzed in remote
locations, the IoT devices share many similar attributes
despite distinct variations and diverse elements. For
example, all IoT devices aim toward data-capturing and
sharing with restricted resource capacities (computational
power, memory size, and energy) [3-5]. These devices are
incorporated into various applications following their
capacity to be connected to the internet and controlled
remotely. Most IoT applications and devices have been
deployed across multiple industries involving hospitals,
travel, smart homes, and engineering.

Given that resource constraints inevitably limit their
software, such installations should be lightweight to
facilitate IoT devices and resolve the abovementioned
restrictions. The IoT devices are susceptible to the risks
potentially encountered by any Internet-connected
equipment as they are primarily developed for online data
management and transmission without human aid. For
example, data collection in smart cities with IoT devices
primarily entails health monitoring (blood pressure,
heartbeat, or body activity) and home automation
(temperature and moisture details and power consumption
patterns).

The high demand for IoT technology and its significant
impact on people's daily lives have regrettably garnered
hackers' and attackers' attention to exploit and control
devices, and the subsequent data derived from the IoT
devices will have a significant impact on people's daily lives.
Thus, IoT devices should be safeguarded against internal
and external threats to mitigate adverse implications, given
that 90% of IoT-derived data would be installed in third-
party databases in the following years [6]. As such devices
denote primary targets for attackers following the stored
information type, it is vital to encrypt IoT device-generated
messages by considering the essentiality of steadily-
accumulating account data [7].

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

329

Thus, encrypting data gathered by IoT devices is critical
because it adds a degree of safety and instils a sense of trust
in the IoT device's user. Unfortunately, this process is not
straightforward, as the IoT device designer confronts
several obstacles due to various factors. In summary, five
factors are discussed with the reasoning in [8]. The first is
the heterogeneous environment in which the IoT device is
placed, and the second is the range of applications available
within the same environment. Thirdly, the price of IoT
components has decreased significantly in recent years,
limiting the funds available for security research. At the
same time, the fourth reason is that most IoT designers
come from an embedded device background, where these
devices operate in closed systems and lack internet access,
and where the most effort and experience are focused on
hardware development. The last factor is the considerable
number of encryption algorithms, where each of them has
its own pros and cons, which makes the selection of the
encryption algorithm for a specific device a challenging task.

Researchers and concerned organizations performed
significant development to mitigate the effects of the
aforementioned factors. The researchers extensively
analyzed multiple encryption techniques and quantified
their effect on various IoT device resources. On the other
side, concerned organizations provide workshops and
publish periodic documentation to educate designers about
the best practices for protecting IoT devices.

The support provided to designers by organizations
requires a lot of effort and time. That is why there is a need
to provide an automated solution where it can provide them
with the necessary support with a substantially reduced
requirement of time and effort. IoTES was developed to
overcome these shortcomings. IoTES is a web app
developed as part of an academic research project to
evaluate the feasibility of applying machine learning to
assist IoT device designers when they want to select an
appropriate encryption algorithm with the least effect on
their device resources. IoTES is an open-source project to
encourage other academics to enhance its features.

This study aims to improve the security features of
IoTES by identifying security level deficiency in IoTES and
providing an improved solution with enhanced security
features. The following section analyzes the IoTES model
with motivation for its development, structure, advantages,
and shortcomings. In the next section, we discuss the
potential improvement in IoTES. The next section provides
the implementation of security level enhancement in IoTES
using machine learning models, algorithms, and their
evaluation. The last section concludes the paper with a
discussion of the security level enhancement we made to
address one of IoTES's shortcomings

2. IoTES Model for Design Dependent
Encryption Selection for IoT Devices

This section explains the Model for Design Dependent
Encryption for IoT Devices (IoTES [18]) with its
motivation, related work and implementation details. We
also discuss the advantages and limitations of IoTES to
determine the possible improvement.

2.1 Motivation

Data privacy and security have become challenging
given the heterogeneously increasing number of internet-
connected devices ("things"). Hence, IoT device-gathered
data security is a pivotal and daunting study area.
Specifically, IoT device application has facilitated the
connection of daily things and communication among
machines, people, and systems in the physical world [3].
The IoT platform, which encompasses individual-
distributed devices to gather data on their daily routines,
places, family members, and bank accounts [9], has
highlighted the essentiality of data encryption for high data
integrity and confidentiality. Encryption and hash functions
are also utilized to protect the passwords and confidential
data embedded in IoT devices apart from significantly
influencing system connectivity and authentication. Based
on the primary motive underlying this study, designers who
establish device security are static, given the versatile
nature of IoT devices, where changes in design and
specifications could be made for multiple contexts. For
example, designers' security design relies on past
knowledge or skills limited to specific physical scenarios or
settings. As a broader range of hardware IoT device
designs is anticipated following global advancements
towards complete IoT-based automation, security denotes a
primary concern for IoT networks. In other words, optimal
encryption methods substantially impact the security
extension for this rapidly growing network. IoTES aimed
to recommend and establish integration between
appropriate encryption methods and design requirements
for high security.
 Every IoT device entails novel architecture without IoT
hardware standardization [10-13]. Multiple non-encrypted
(constrained) devices have been developed as IoT devices,
encountering limited resources[14-16]. Meanwhile, a
considerable number of encryption methods have emerged
[17] in line with recent research [13]. The justifications
mentioned above render identifying appropriate encryption
methods for multiple IoT devices challenging for IoT device
designers and developers [13]. Many Empirical works have
been published for IoT designers to take constructive
measures within the IoT industry. The measures based on
the "Security by Design Concept" by optimizing designers'
knowledge and developing suitable IoT encryption selection
methodologies have prompted us to structure and develop a

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

330

model named IoTES with all the necessary data and select
the most appropriate encryption for every IoT device.

2.2 Structure of IoTES

This section explains the development phases of IoTES,
such as experimental design, data analysis, machine
learning model and web app development, as shown in
Figure 1.

2.2.1 Experimental Design

The first step in IoTES development is building a
dataset using the encryption algorithms and the IoT devices.
IoTES dataset is created via a series of experiments
including various encryption methods (28 in all) belonging
to three distinct encryption classes: Symmetric, Asymmetric,
and Lightweight. These encryption techniques are
implemented in Python using standard libraries. Finally, a
platform is developed to facilitate the testing process. Three
single-board computers are used to evaluate these
encryption algorithms: Raspberry Pi-3, Raspberry Pi-Zero,
and Pocket Beagleboard. The developed platform is capable
of encrypting the message and logging the effect of the
encryption on device resources, such as processing power
and time consumption.

Fig. 1. IoTES Methodology

2.2.2 Data Analysis and Preprocessing

Data analysis is performed in the next phase to
validate the data and get valuable insights. After data
analysis, the dataset is processed through several
preprocessing and feature engineering techniques for
statistical significance in the machine learning model. Data
preprocessing is an essential step in data management for
our machine learning model and includes cleaning,
normalization, and the change of features. The study's
categorical features required much data manipulation, as
predictive models perform better by converting the
categorical data to numeric-categorical values. One hot
encoding technique encodes the features, while the label

encoding technique transforms the target column in IoTES.
Data scaling is also performed for several features as the
machine learning algorithms determine the distance
between data. The numerical columns are scaled so that
data ranges between [0,1]. Standard scaler is not being used
because the best performing machine learning models are
tree-based models, and standardization did not affect the
results.

After preprocessing, the data is divided into two sets,
a train set, and a test set. We have used an 80/20 data-
splitting ratio to develop an accurate prediction model, i.e.,
80 percent of the data is used to train the model, and just 20
percent is used to evaluate its performance. Data validation
is performed using 25% of the training data to evaluate the
model stability. For statistical purposes, the dataset
included a large amount of data from many measurements
made using a single device and encryption with the same
settings, leading to many duplicate instances. To prevent
data leaking from the training set to the testing set, we have
grouped this kind of data and be exposed to the training set
or testing set. The preprocessing steps are shown in
Algorithm 1, and the same preprocessing steps are
performed for the security level addition implemented in
this paper due to the same rough dataset being used.

2.2.3 Machine Learning Model Development

The next step is to build a machine learning model
capable of selecting an appropriate encryption algorithm
based on various inputs. Two machine learning approaches
are implemented for IoTES. The first approach is
constructed using supervised learning multiclass
classification models with the encryption's name column as
the target. Five different supervised learning models are
trained and tested for the target. The data is then used as
training and testing sets to evaluate the model's
performance. Following training and testing of the
classification models, the results of all models are
compared to select the most accurate model and carry it out
to the implementation phase. The gradient boosting
technique is selected for the final model of IoTES (the
results of all models are published in [18]).

The second approach is to mimic the flow of the
experiment, where the information about the encryption
algorithm is already known, such as the key size, block size,
cipher type, and the device information such as processor
type and frequency, and memory size. The unknown values
for use are the load of the encryption algorithm on device
resources. Therefore, the measured parameters are
specified as the target variable. These measured parameters
are the four features, including 'DURATION', 'CPU%',
'PERFORMANCE', and 'MEM_USAGE%'. We use
regression models for all four features because of

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

331

numerical feature values. We also use a classification
model for 'DURATION' because it contains a broad date
range and will improve the results if the user input is
categorized into low or high duration. Four regression
models and one classification model are also used for our
proposed approach. Our proposed IoTES with security
level is expected to have better predictions for other
devices than those utilized in this experiment.

2.2.4 Web-App Development

The last stage is to make the model available to the
community, and a web-based application is designed to
serve the purpose. We construct a dashboard using the
python module ipywidgets. Ipywidgets is a collection of
interactive HTML widgets for use with Jupyter notebooks.
It empowers the user with control over data and visualizes
data changes on a graph. We utilize the voilà python
package, which converts a standard HTML notebook into a
standalone web application. The complete work, including
codes, models, dashboards, and datasets, is uploaded to
GitHub and linked to a platform as a service (Heroku) that
enables application execution on the cloud. The next step is
to link the domain (iotes.net) to the Heroku platform and
serve all web requests to our model using the developed
web app.

2.3 Advantages

Choosing an effective encryption method for an IoT
device requires taking several aspects into account,
including the device's design, the capacity of its resources,
and the encryption's consumption of those resources.
Human decision-making based on data will diminish as the
number of variables increases, while machine learning is a
well-known approach for addressing such
multidimensional issues. Therefore, IoTES apply machine
learning to choose the appropriate encryption approach
based on the resources available to the IoT device. IoTES
is designed as a web application so that designers can
readily use it. It generates suggestions based on the device
specification and the designer's requirements. By using
IoTES, designers will save significant time and effort in
picking a suitable encryption method for their products.
The IoTES does not need any previous understanding of
encryption.

2.4 Limitations

There are some limitations present in IoTES which
are described in this section.

Platform Testing Accuracy: IoTES platform incorporates
different types of profilers, yet the memory profiler
provides inaccurate readings, and the deployment of a
better profiler is required to have better readings.

IoT Device Variety: IoTES uses specific primary devices
for generating the dataset due to the absence of an available
dataset. Nevertheless, the proposed model could not be
deployed on all IoT devices following the diversity of
current IoT devices.

Limitation of Encryption Algorithms: Multiple
encryption schemes are identified, each having unique
implications on different resource availability given the
broad device diversity. Furthermore, the number of
available encryption algorithms continues to expand daily.
IoTES does not include all of them in the training or testing
model following various methods.

Dataset Limitation: We could not produce a
comprehensive and generalized dataset that entailed more
devices and encryption methods towing to the two
limitations mentioned earlier. Regardless, this work is
implementable with improvements for model
generalization.

Extended Features: Multiple features encompassing
temperature, operating system type, power consumption, or
message encryption frequency that could significantly
influence IoT device resources are beyond the current study
scope and could be addressed in the future version.

Encryption Algorithm Security Level: The dataset in
IoTES does not include the security level provided by each
encryption algorithm which is necessary for the designer to
build a better decision on encryption selection.

3. IoTES with Security

The primary goal of IoTES is to strengthen security by
encrypting messages inside IoT devices. This goal can be
achieved by encouraging IoT device designers to adopt an
encryption technique. The motivation is provided by
simplifying the process of selecting an appropriate
encryption algorithm while maintaining the load within the
required limit. Since IoTES recommends several suitable
encryption algorithms to the user based on their inputs and
security is the main objective for selecting an appropriate
encryption algorithm, the security level provided by the
encryption algorithm has to be provided with it to
strengthen the user decision and make it security-oriented.
The current version of IoTES does not incorporate the
security level information, which is one of the
shortcomings of IoTES stated in the previous section. The
following section explains the steps to add this important
improvement to IoTES.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

332

4. Methodology

The method used to achieve the goal of including the
security level provided by each encryption technique in
IoTES involves finding the availability of security
information, adding security level information to the
dataset, preprocessing the dataset, training, deploying and
evaluating the model, which is discussed in the following
section.

4.1 Collecting Encryption Security Information

The first step for including encryption algorithm
security levels is to survey the literature and find the
security level of the encryption algorithms included in
IoTES. The security levels of the encryption algorithms are
shown in Table 1. The security level for all the encryption
algorithms included in IoTES is unavailable. Therefore, a
new model named 'IoTES with Security' is developed along
with the previously available version of IoTES.

Table 1: Security Level Provided By Different Encryption Algorithms used In IoTES

Cryptosystem Operation Key Size
(bit)/Round

Strength
Level

Description

Comparison
to

RSA

Status Through
2030

[19] AES Encryption(sym) 128/10 128 Medium Security 3072 Acceptable

192/12 192 Medium- High
Security

7680 Acceptable

256/14 256 High Security 15360 Acceptable

[20] DES Encryption(sym) 56/16 64 Weak Security 640 െ 1024 Avoid

[19, 21] 3DES
(TDES)

Encryption(sym) 112/3 ൈ 16 80 Weak Security 1024 Legacy

168/3 ൈ 16 112 Medium Security 2048 Legacy

[22, 23] ECDSA Key exchange
&

Authentication

160 – 223 80 Weak Security 1024 Legacy

224 – 255 112 Medium Security 2048 Acceptable

256 – 383 128 Medium Security 3072 Acceptable

384– 511 192 Medium- High
Security

7680 Acceptable

512 ൅ 256 High Security 15360 Acceptable

[19] RSA Encryption(asym)

Size of modulus
𝑁 ൌ 𝑝. 𝑞

1024 ൑ 80 Weak Security െ Legacy

2048 112 Medium Security െ Acceptable

3072 128 Medium Security െ Acceptable

7680 192 Medium- High െ Acceptable

15360 256 High Security െ Acceptable

[24, 25] Rabin Signature (asym) 3072 128 Medium Security 3072 Acceptable

7680 192 Medium- High
Security

7680 Acceptable

15360 256 High Security 15360 Acceptable

[26] Rabbit 128 128 Medium Security 3072 Acceptable

[27-29] ChaCha

No attack on
chacha [28]

Encryption(sym) 128/6 107 Medium Security 1024 െ 2048 Legacy

256/6 139 Medium Security 3072 െ 7680 Acceptable

128/7 128 Medium Security 3072 Acceptable

256/7 248 High Security 768 െ 15360 Acceptable

256/8 256 High Security 15360 Acceptable

256/9 256 High Security 15360 Acceptable

[30] Fernet Encryption &
authentication (sym)

AES 128 CBC

256 128 Medium Security 3072 Acceptable

[31, 32] ARC2 Encryption(sym) 𝑏𝑟𝑜𝑘𝑒𝑛 Weak Security െ Avoid

[27-29, 33] Salsa

No attack on

Encryption(sym) 128/7 111 Medium Security 1024 െ 2048 Legacy

256/7 151 Medium Security 3072 െ 7680 Acceptable

128/8 128 Medium Security 3072 Acceptable

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

333

Salsa [28] 256/8 251 High Security 768 െ 15360 Acceptable

128/9 128 Medium Security 3072 Acceptable

256/9 256 High Security 15360 Acceptable

128/10 128 Medium Security 3072 Acceptable

256/10 256 High Security 15360 Acceptable

128/11 128 Medium Security 3072 Acceptable

256/11 256 High security 15360 Acceptable

128/12 128 Medium Security 3072 Acceptable

256/12 256 High Security 15360 Acceptable

128/20 128 Medium Security 3072 Acceptable

256/20 256 High Security 15360 Acceptable

[34-36] CAST Encryption(sym) 64 48 Weak Security 480 Avoid

128/5 31.4 Weak Security ൑ 480 Avoid

128/16 44.2 Weak Security ൑ 480 Avoid

256 256 High Security 15360 Acceptable

1024 1024 High Security ൒ 15360 Acceptable

[37] Ed25519 Signature (asym) 256 128 Medium Security 3072 Acceptable

[38-40] Sphincs Integrity 256 256 High Security 15360 Acceptable

[41] Schmidt-
Samoa

Encryption(asym) Like Rabin െ െ െ െ

[42] Lamport Integrity 256 128 Medium Security 3072 Acceptable

[43] Present Encryption(sym) 80/26 68,2 Weak Security 640 െ 1024 Avoid

80/27 72 Weak Security 640 െ 1048 Avoid

80/28 77,4 Weak Security 640 െ 1048 Avoid

128/28 122 Medium Security 2048 െ 3072 Acceptable

[44] Clefia Encryption(sym) 128 127.44 Medium Security 2048 െ 3072 Acceptable

[31, 45-47]
Simon

Encryption
(sym)

Block
Size

32 64/24 63 Weak Security 640 െ 1024 Avoid

48 72/24 56 Weak Security 640 Avoid

48 96/25 80 Weak Security 1024 Legacy

64 96/32 63 Weak Security 640 െ 1024 Avoid

96 96/37 88 Weak Security 1024 െ 2048 Legacy

64 128/31 120 Medium Security 2048 െ 3072 Acceptable

128 128/49 120 Medium Security 2048 െ 3072 Acceptable

96 144/38 136 Medium Security 3072 െ 3072 Acceptable

128 192/51 184 Medium Security 3072 െ 3072 Acceptable

128 256/24 248 High Security 307 െ 15360 Acceptable

[31, 48] Skinny Encryption(sym) 128/36 51.95 Weak Security 480 െ 640 Avoid

128/40 52 Weak Security 480 െ 640 Avoid

256 256 High Security 15360 Acceptable

284 284 High Security 307 െ 15360 Acceptable

[49] TEA Encryption(sym) 128 121.5 Medium Security 2048 െ 3072 Acceptable

[50] XTEA Encryption(sym) 128/36 126,44 Medium Security 2048 െ 3072 Acceptable

128/64 128 Medium Security 3072 Acceptable

[51] XXTEA Encryption(sym) 128/64 ൑ 128 Medium Security 2048 െ 3072 Acceptable

This message security level integration model will work for
the security issues addressed in the [52-55], and also for the

issues at the design level [56]. Further, this can help the
IoT-based devices and software for different domain
applications such as [56-58]. This can help further with any
different IoT-based designs.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

334

4.2 Adding Security Level to Dataset

All the steps of data preprocessing are provided in
Algorithm 1. We start with processing the data and split the
dataset into four categories, i.e., Device Parameters,
Algorithm Parameters, Measure Parameters and other
parameters. Next, we remove any unnecessary data which is
found in the 'other parameters' category. The Performance
column has a wide range of values due to the usage of
lightweight algorithms with very high performance. Any
encryption algorithm with performance higher than 400 is
considered as good. All other numerical columns are
normalized. For the traditional approach, 'TYPE' and
'CIPHER TYPE' columns are removed for dimensionality
reduction of data. The traditional IoTES model includes all
the 28 encryption algorithms, and "IoTES with Security"
include only those encryption algorithms for which their
security level is known. Therefore, for adding security level
information to the traditional IoTES model, we add the
security level information in a new column, remove the

algorithms not having their security level, and encode it
with the label encoder technique. We remove all the digital
signature algorithms as the security level of only two such
algorithms is available.

For the "IoTES with Security" model, we do not need to
add the security level in the dataset as we will use the
security level from the user dashboard. We take measure
variables as target variables and split data into independent
and target variables for each target variable. The categorical
data is coded using the one-hot-encoding technique. The
final step in data preprocessing is to avoid data leakage
from train to test set. Because our data consists of repeated
experimental tests, it includes many repeated and similar
data. If we do not separate this kind of data properly, we
will end with similar data in the training and testing set
where the test results will not be reliable, and our model
will not perform as expected in production. Therefore,
duplicate data is added to the same group to avoid
duplication between the train and test data.

Algorithm 1 Data Preprocessing
1: Split Parameters into categories
2: Device Parameters ← [' DEVICE',' CPU MODEL NAME',' CPU ARCHITECTURE',' CPU COUNT',

' TOTAL CPU MAX (MHZ)']
3: Algorithm Parameters ← [' TYPE',' ALGORITHM',' FUNCTIONALITY',' CIPHER TYPE',' KEY SIZE',

' BLOCK SIZE',' MESSAGE SIZE']
4: Measure Parameters ← [' DURATION (SEC)',' CPU%',' PERFORMANCE',' MEM USAGE (%)']
5: Other Parameters ← ['RANGE_DURATION (SEC)'….]
2: for ALL Data do
3: if !Data.equalTo(Device) OR !Data.equalTo(Algorithm) OR !Data.equalTo(Measure) then
4: remove DATA
5: end if
6: end for
7: PERFORMANCE ← 400
8: numericalcolumns scaled to [0,1] range
9: if Model.equalTo(Traditional Approach) then
10: remove Model.′TYPE ′
11: remove Model. ′CIPHER TYPE ′
12: end if
13: if Model.equalTo(Traditional Approach) and Model.contains(SECURITY DATA) then
14: remove Model.′TYPE ′
15: remove Model. ′CIPHER TYPE ′
16: Add SECURITY INFORMATION
17: LabelEncoder encodes SECURITY INFORMATION
18: for ALL Algorithms do
19: if !Algorithm.contains(SECURITY INFORMATION) then
20: remove Algorithm
21: end if
22: end for
23: for ALL Algorithms do
24: if Algorithm.contains(DIGITAL SIGNATURE) then

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

335

25: remove Algorithm
26: end if
27: end for
28: end if
29: if Model.equalTo(New Approach) then
30: Split DATA to Independent variables and Target variables
31: Target variables ← Measure Parameters
32: end if
33: OneHotEncoder encodes Categorical Variables
34: group MEASUREMENTS from DATA
35: Split groups to Training and Test
36: Save Traditional Approach Training Files
37: Save Traditional Approach Test Files
38: Save New Approach Training Files
39: Save New Approach Test Files

4.3 Training model

As we have seen in the previous step, the traditional
model contains two datasets. The first dataset contains 28
encryption algorithms without including the security
strength of these algorithms. The second dataset includes 15
encryption algorithms along with the security level of each
of those algorithms. The dataset is split into two sets for the
training and testing of both models. We split data into
independent and target variables where the target column is
the algorithm column. We train six different models to
compare their results and carry the best-performed model.
Therefore, we plot the confusion matrix and classification
report for comparison purposes. All the training and testing
steps of the traditional classification approach IoTES are
described in Algorithm 2.

We created four regression models and one
classification model for the "IoTES with Security" model.
Four regression models use measure variables as target
column i.e., 'DURATION (SEC)', 'CPU%',
'PERFORMANCE', 'MEM USAGE (%)'). We train and test
six machine learning algorithms for each measurement
target to compare their result and carry out the best-
performed model to the production step. An extra
classification model is trained and tested for 'DURATION
(SEC)' to classify the encryption which has higher time than
the ones having lower time, and this model is developed
because the data of 'DURATION (SEC)' has long variations
and the classification model improves the selection accuracy.
The result of each model is recorded for comparison
purposes. All the process of training and testing of the
"IoTES with Security" model is described in Algorithm 3.

Algorithm 2 Traditional Model Training and Testing

1: Load Traditional Approach Training Files.LabelEncoder
2: Load Traditional Approach Test Files.LabelEncoder
3: Split DATA to Independent variables and Target variables
4: Target variables ← Algorithm
5: Classification Models ← [' Logistic Regression',' Gradient Boosting',' Decision Tree',' Random Forest','

XGBoost']
6: for ALL Traditional Approach and Traditional Approach.SecurityData do
7: for ALL Classification Models do
8: Build Model
9: Train Model

10: Test Model
11: Plot Confusion Matrix
12: Extract Classification Report
13: if CurrentModel > PreviousModel then
14: Best Model ← CurrentModel
15: end if
16: Save Model
17: Save Model.SecurityData
18: end for

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

336

19: end for

Algorithm 3 New Approach Model Training

1: Load New Approach Training Files.LabelEncoder
2: Load New Approach Test Files.LabelEncoder
3: Models ← [' SVM',' Logistic Regression',' Decision Tree',' Random Forest',' XGBoost']
4: for ALL Target Variables do
5: for ALL Models do
6: Build Model
7: Train Model
8: Test Model
9: Save Model

10: end for
11: Plot Confusion Matrix
12: for ALL Models do
13: if CurrentModel > PreviousModel then
14: Save Mosel Result
15: Best Model ← CurrentModel
16: end if
17: end for
18: end for
19: if T arget Variables.equals(′DURATION (SEC) then
20: Build Classification Model
21: Train Classification Model
22: Test Classification Model
23: Select Model ← BestModel
24: Build Regression Model (0.5 threshold point)
25: Train Regression Model
26: Test Regression Model
27: Save Model
28: end if

4.4 Models Deployment

The selection of all the created models is specified in
the web app deployment. User input data widgets are
created in three different categories. The first category is
the Algorithm category, where the user specifies the
algorithm type, cipher type, key size, block size, and
message size. The second category is the Device category
which allows the user to select all specified parameters

based on the device. The device widgets are connected; if
the user selects a known device, all other input widgets
fields will be filled automatically. The third category
contains the measured parameters, which must be specified
by the user based on the requirement. The security level
has been added to the new window in the web app named
"IoTES with Security" and utilizes the machine learning
models with the security level. For "IoTES with Security",
the user selects all the options described above, along with
an additional security level, as shown in Figure 3.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

337

Fig. 3. IoTES Application Interface (A) without security information (B) after including security information

Measure parameters selected by the user are used as input
to the traditional classification models. The model will
return the top three algorithms matching the user input. The
new approach models use device inputs as input parameters,
and algorithm inputs are used for filtering the matching
algorithms while the measure inputs and security level (if
IoTES with Security is selected) input are used for sorting

the algorithms. Euclidean distance is used to identify the
suited algorithms by calculating scaled Euclidean distance
between the measured + security level input values and
model predictions. Algorithm filtering is removed if there
is no algorithm satisfying the measure inputs. All these
steps are explained in algorithm 4.

Algorithm 4 Models Deployment
1: for ALL Traditional Models, Traditional.Security Model and New Approach Model do
2: Assess Data Path, LabelEncoder Path and Model Path
3: end for
4: Split InputData to Device, Algorithm and Measure
5: for ALL Traditional Models and Traditional.Security Models
do
6: Select Desired Algorithm, Measure values and Device type
7: if Model.equalTo(Traditional.Security) then
8: Select Security values
9: end if

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

338

10: end for
11: if Model.equalTo(Traditional) then
12: Input ← Measure Parameters
13: end if
14: if Model.equalTo(New Approach) then
15: Desired Value ← Measure Parameters
16: end if
17: for ALL Traditional Model and Traditional.Security Model do
18: InputParameters ← Device, Algorithm and Measure Parameters
19: for ALL Predictions do
20: Sort Predictions.Probability then Print Prediction[0], Prediction[1], Prediction[2]
21: end for
22: end for
23: for ALL New Approach Model do
24: InputParameters, Filtering, SortingAlgorithms ← Device, Algorithm, Measure Params
25: for ALL Algorithms do
26: Use all available key and block sizes
27: Calculate EuclideanDistance
28: for ALL Target Variables do
29: Assess IndividualCoefficients
30: end for
31: Calculate EuclideanDistance.MeasureTargetValues(Widgets, Predictions)
32: end for
33: Save DataSet
34: for ALL Target Variables do
35: Predict Value then Measure.Parameters ← Value
36: end for
37: if Algorithm < Requirements then
38: Remove Algorithm
39: end if
40: if !(ALL Algorithms < Requirements) then
41: Remove Filtering
42: end if
43: for ALL Models do
44: Sort Models.EuclideanDistance then Print Model[0], Model[1], Model[2]
45: end for
46: Update Widget Values
47: end for

4.5 Models Results

As previously indicated, the traditional approach
consists of two datasets, one containing all 28 encryption
algorithms but not their security levels, while the other
dataset contains just those algorithms to which security
levels have been included. The first dataset was
preprocessed before being trained and tested using six
machine learning techniques to select the best model and
carry it out for production. The results are shown in Table 2,

showing that Linear Regression has the lowest performance
following the Support Vector Classifier. The tree-based
models are performing better than the previously mentioned
models. It is visible from Figure 2(A) that XGBoost and
Gradient Boosting are the highest-performing models.
Comparing traditional approach (IoTES) models with the
"IoTES with Security" in Figure 2, we find that the Linear
Regression and SVC have a slightly improved result due to
the target column with fewer variables, and it has only 15
encryption algorithms to classify as compared to 28

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

339

algorithms for IoTES. At the same time, the performance of
most of the tree-based algorithms has somehow reduced
because of an increased number of features. Nevertheless,
XGBoost and GradientBoosting again have the highest
performance.

As discussed earlier, we built a separate regression
model for each measured value for the traditional IoTES
model. We trained and tested six different models to select
the best among them. For CPU%, MEM%, and
PERFORMANCE, the tree-based models performed better
than the other. Interestingly, the decision tree and
GradientBoosting have very close results, and we have
adopted the GradientBoosting model. We can see the model
result of each measured column in Table 3. We can notice

that the Mean Absolute Error (MAE) of the DURATION
(SEC) parameter is a high value due to the reason that the
Duration (SEC) column has a wide range of values. The
higher values in this column come from the heavily tested
algorithm such as Schmidt-Samoa, precisely when it is
tested on a Pi-Zero device. That is why we decided to use a
classification model to classify the algorithms with more
encryption time than those requiring less time with 0.5
seconds as the threshold point. The training accuracy of the
classification model is 99.8%, and the test accuracy is
100.0%. Then we used a separate regression model for the
algorithms with a duration of more than 0.5 and lower than
0.5 seconds. The result of these two different regression
models is shown in Table 4.

Table 2: Traditional Classification Models Comparison with and Without Adding Security Level Feature

Fig. 2. Different ML models comparison (A) Traditional classification approach (B) Traditional classification approach
with security level data.

Machine
learning
Model

Train
accuracy

Test
accuracy

Train
precision

Test
precision

Train Recall Test Recall Train F1
Score

Test F1
Score

Traditional
Classification
Approach

Linear
Regression

0.77495

0.749397 0.800999 0.762203 0.745562 0.768547 0.749401 0.724557

SVC 0.867203 0.855591 0.888322 0.867743 0.864948 0.877384 0.855289 0.850899

XGBoost 1 0.958568 1 1 1 0.959633 0.959488 0.959282
Decision
Tree 0.997485 0.952534 0.997549 0.997535 0.997526 0.953678 0.953412 0.953357
Random
Forest 0.944366 0.925583 0.95474 0.944964 0.944172 0.939341 0.926726 0.924836
Gradient
Boosting 1 0.958166 1 1 1 0.959362 0.95912 0.958812

Traditional
Classification
Approach with
Algorithm
Security Level

Linear
Regression

0.809873

0.664029

0.867482

0.795027

0.776298

0.715052

0.721937

0.66372

SVC

0.896452

0.861871

0.899355

0.902837

0.898826

0.857903
0.856368

0.85311

XGBoost

1

0.923741

1

1

1

0.909696

0.910214

0.909799

Decision
Tree

0.998072

0.920863

0.998284

0.998064

0.998161

0.907338

0.910541

0.908317

Random
Forest

0.979368

0.91295

0.980617

0.981506

0.980338

0.902539

0.893533

0.895189

Gradient
Boosting

1 0.930216 1 1 1 0.92148 0.917521 0.918981

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

340

Table 3: New Approach Ml Models Results Comparison For All Measure Target Columns

Table 4: Duration (Sec) Ml Models Result For Classified Data
 Train MAE Test MAE Train MSE Test MSE

<0.5 model 0.00399 0.00459 0.00004 0.00012
<0.5 model 0.14234 0.33308 2.10942 12.4898

5. Conclusion

IoTES provides IoT device designers with extensive dynamic
support to make the process of identifying appropriate encryption for
their devices as simple as possible. This assistance is far more
advanced than other alternatives offered by other researchers and
organizations. However, IoTES still has some limitations identified in
this work. One of these limitations, namely the absence of the security
level supplied by each encryption technique, has been addressed in this
study. In this work, we have presented the "IoTES with Security"
model with the added support of the security level feature to IoTES.
Evaluation of our model improves the classification accuracy with the
added security level support of encryption algorithms.

We still hope that all other IoTES drawbacks can be addressed as well,
and we hope we can get the support of the research community to speed
up the improvement process. For this purpose, all the work of building
IoTES is available to all researchers interested in participating in the
improvement process. Those who successfully solve one or more of the
IoTES flaws will be listed as authors and participants on the website
(www.iotes.net), along with their participation.

REFERENCES
[1] A. Rghioui and A. Oumnad, "Internet of Things: Visions,

technologies, and areas of application," technology, vol. 6, no. 7,
2017.

[2] A. Ragab, G. Selim, A. Wahdan, and A. Madani, "Robust
Hybrid Lightweight Cryptosystem for Protecting IoT Smart
Devices," in Security, Privacy, and Anonymity in Computation,
Communication, and Storage, (Lecture Notes in Computer
Science, 2019, ch. Chapter 1, pp. 5-19.

[3] M. N. B. Anwar, M. Hasan, M. M. Hasan, J. Z. Loren, and S. T.
Hossain, "Comparative Study of Cryptography Algorithms and
Its Applications," International Journal of Computer Networks
and Communications Security, vol. 7, no. 5, pp. 96-103, 2019.

[4] T. Poongodi, R. Krishnamurthi, R. Indrakumari, P. Suresh, and
B. Balusamy, "Wearable Devices and IoT," in A Handbook of
Internet of Things in Biomedical and Cyber Physical System:
Springer, 2020, pp. 245-273.

[5] N. Maryanti, R. Rohana, and M. Kristiawan, "The Principal's
Strategy In Preparing Students Ready To Face the Industrial
Revolution 4.0," International Journal of Educational Review,
vol. 2, no. 1, pp. 54-69, 2020.

[6] M. Hibti, K. Baïna, and B. Benatallah, "Towards Swarm
Intelligence Architectural Patterns: an IoT-Big Data-AI-
Blockchain convergence perspective," in Proceedings of the 4th
International Conference on Big Data and Internet of Things,
2019, pp. 1-8.

[7] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P.
Barnaghi, and A. P. Sheth, "Machine learning for Internet of
Things data analysis: A survey," Digital Communications and
Networks, vol. 4, no. 3, pp. 161-175, 2018.

DURATION (SEC) CPU%

Train
MAE

Test
MAE

Train
MSE

Test
MSE

Train
MAE

Test
MAE

Train
MSE

Test
MSE

Lasso 1.60915 1.75337 26.03786 52.40168 0.2287 0.20975 0.08746 0.07304

SVR 0.63856 0.83064 22.00153 47.97857 0.05385 0.05115 0.00499 0.004

Tree 0.14429 0.3363 2.10946 12.4901 0.00599 0.00719 0.00014 0.00018

Forest 0.14584 0.33693 2.10959 12.49468 0.01116 0.01411 0.00049 0.00096

Boosting 0.14429 0.33635 2.10946 12.49025 0.00599 0.00716 0.00014 0.00018

XGBoost 0.14436 0.33647 2.10946 12.49056 0.00606 0.00697 0.00014 0.00017

MEM USAGE (%) PERFORMANCE

Train
MAE

Test
MAE

Train
MSE

Test
MSE

Train
MAE

Test
MAE

Train
MSE

Test
MSE

Lasso 0.04502 0.04506 0.00219 0.00219 0.30182 0.29002 0.126 0.12061

SVR 0.04933 0.04823 0.00261 0.0025 0.04933 0.07366 0.00851 0.01023

Tree 0.00494 0.00626 0.00015 0.00023 0.00494 0.01191 0.00095 0.0007

Forest 0.0053 0.00646 0.00016 0.00023 0.0053 0.01811 0.00146 0.00123

Boosting 0.00497 0.00646 0.00015 0.00023 0.00497 0.01221 0.00095 0.0007

XGBoost 0.00528 0.0065 0.00015 0.00022 0.00528 0.01277 0.00095 0.00071

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

341

[8] S. Roy, U. Rawat, H. A. Sareen, and S. K. Nayak, "IECA: an
efficient IoT friendly image encryption technique using
programmable cellular automata," Journal of Ambient
Intelligence and Humanized Computing, pp. 1-20, 2020.

[9] A. C. Chhoton, "Executing an Effective IoT Security Testing
Methodology: A Complete Guideline for Device Developers,"
2018.

[10] L. Marin, M. P. Pawlowski, and A. Jara, "Optimized ECC
implementation for secure communication between
heterogeneous IoT devices," Sensors, vol. 15, no. 9, pp. 21478-
21499, 2015.

[11] M. A. U. Rehman, R. Ullah, C.-W. Park, and B. S. Kim,
"Towards Network Lifetime Enhancement of Resource
Constrained IoT Devices in Heterogeneous Wireless Sensor
Networks," Sensors, vol. 20, no. 15, p. 4156, 2020.

[12] L. Wei, Y. Chen, Y. Zhang, L. Zhao, and L. Chen, "PSPL: A
Generalized Model to Convert Existing Neighbor Discovery
Algorithms to Highly-efficient Asymmetric Ones for
Heterogeneous IoT Devices," IEEE Internet of Things Journal,
2020.

[13] S. Singh, P. K. Sharma, S. Y. Moon, and J. H. Park, "Advanced
lightweight encryption algorithms for IoT devices: survey,
challenges and solutions," Journal of Ambient Intelligence and
Humanized Computing, pp. 1-18, 2017.

[14] J. Arshad, M. A. Azad, M. M. Abdeltaif, and K. Salah, "An
intrusion detection framework for energy constrained IoT
devices," Mechanical Systems and Signal Processing, vol. 136, p.
106436, 2020.

[15] C. Su, F. Ye, L.-C. Wang, L. Wang, Y. Tian, and Z. Han, "UAV-
assisted wireless charging for energy-constrained IoT devices
using dynamic matching," IEEE Internet of Things Journal,
2020.

[16] F. Samie, L. Bauer, and J. Henkel, "Hierarchical Classification
for Constrained IoT Devices: A Case Study on Human Activity
Recognition," IEEE Internet of Things Journal, 2020.

[17] T. Sharma, "Lightweight Encryption Algorithms, Technologies,
and Architectures in Internet of Things: A Survey," in
Innovations in Computer Science and Engineering: Springer,
2020, pp. 341-351.

[18] M. Saleh, N. Jhanjhi, A. Abdullah, and R. Saher, "IoTES (A
Machine learning model) Design dependent encryption selection
for IoT devices," in 2022 24th International Conference on
Advanced Communication Technology (ICACT), 2022: IEEE, pp.
239-246.

[19] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, "NIST
special publication 800-57," NIST Special publication, vol. 800,
no. 57, pp. 1-142, 2007.

[20] R. Liu, Z. Weng, S. Hao, D. Chang, C. Bao, and X. Li,
"Addressless: enhancing IoT server security using IPv6," IEEE
Access, vol. 8, pp. 90294-90315, 2020.

[21] E. Barker and N. Mouha, "Recommendation for the triple data
encryption algorithm (TDEA) block cipher," National Institute
of Standards and Technology, 2017.

[22] S. Vanstone, "Responses to NIST's proposal," Communications
of the ACM, vol. 35, no. 7, pp. 50-52, 1992.

[23] M. Suárez-Albela, P. Fraga-Lamas, and T. M. Fernández-
Caramés, "A practical evaluation on RSA and ECC-based cipher
suites for IoT high-security energy-efficient fog and mist
computing devices," Sensors, vol. 18, no. 11, p. 3868, 2018.

[24] M. A. Asbullah and M. R. Kamel, "Design and Analysis of
Rabin-p Key Encapsulation Mechanism for CyberSecurity
Malaysia MySEAL Initiative," IJCR, vol. 9, no. 1, pp. 19-51,
2019.

[25] M. O. Rabin, "Digitalized signatures and public-key functions as
intractable as factorization," Massachusetts Inst of Tech
Cambridge Lab for Computer Science, 1979.

[26] M. Boesgaard, M. Vesterager, T. Christensen, and E. Zenner,
"The stream cipher rabbit," ECRYPT Stream Cipher Project
Report, vol. 6, p. 28, 2005.

[27] J.-P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C.
Rechberger, "New features of Latin dances: analysis of Salsa,
ChaCha, and Rumba," in International Workshop on Fast
Software Encryption, 2008: Springer, pp. 470-488.

[28] S. Dey and S. Sarkar, "Improved analysis for reduced round
Salsa and Chacha," Discrete Applied Mathematics, vol. 227, pp.
58-69, 2017.

[29] A. R. Choudhuri and S. Maitra, "Differential Cryptanalysis of
Salsa and ChaCha-An Evaluation with a Hybrid Model," IACR
Cryptol. ePrint Arch., vol. 2016, p. 377, 2016.

[30] "Fernet (symmetric encryption)." [Online]. Available:
https://cryptography.io/en/latest/fernet/.

[31] H. AlKhzaimi and M. M. Lauridsen, "Cryptanalysis of the
SIMON Family of Block Ciphers," IACR Cryptol. ePrint Arch.,
vol. 2013, p. 543, 2013.

[32] "Analysis of RC2." [Online]. Available:
https://www.cryptrec.go.jp/exreport/cryptrec-ex-1042-2001.pdf.

[33] S. Khazaei, "Neutrality-Based Symmetric Cryptanalysis," EPFL,
2010.

[34] X. Zhou, J. Li, X. Lai, and H. Yan, "Revisit and Cryptanalysis of
a CAST Cipher," DEStech Transactions on Computer Science
and Engineering, no. ICEITI, 2017.

[35] L. Elbaz and H. Bar-El, "Strength assessment of encryption
algorithms," White paper, 2000.

[36] M. Ebrahim, S. Khan, and U. B. Khalid, "Symmetric algorithm
survey: a comparative analysis," arXiv preprint arXiv:1405.0398,
2014.

[37] J. Yu, "Is there a case to prefer Ed25519 over ECDSA P-256 for
DNSSEC?."

[38] J.-P. Aumasson et al., "SPHINCS," 2019.
[39] D. Amiet, A. Curiger, and P. Zbinden, "FPGA-based accelerator

for post-quantum signature scheme SPHINCS-256," IACR
Transactions on Cryptographic Hardware and Embedded
Systems, pp. 18-39, 2018.

[40] A. Hülsing, J. Rijneveld, and P. Schwabe, "Armed sphincs," in
Public-Key Cryptography–PKC 2016: Springer, 2016, pp. 446-
470.

[41] K. Schmidt-Samoa, "A new rabin-type trapdoor permutation
equivalent to factoring," Electronic Notes in Theoretical
Computer Science, vol. 157, no. 3, pp. 79-94, 2006.

[42] D. D. Berendsen, "A Comparative Study on Signature Schemes
for IoT Devices," 2021.

[43] A. F. Gutierrez and M. Naya-Plasencia, "Improving key-
recovery in linear attacks: Application to 28-round PRESENT,"
in EUROCRYPT 2020-Annual International Conference on the
Theory and Applications of Cryptographic Techniques, 2021, no.
12105: Springer, pp. 221-249.

[44] S. Ahmadi, M. Delavar, J. Mohajeri, and M. R. Aref, "Security
analysis of CLEFIA-128," in 2014 11th International ISC
Conference on Information Security and Cryptology, 2014: IEEE,
pp. 84-88.

[45] H. Chen and X. Wang, "Improved linear hull attack on round-
reduced Simon with dynamic key-guessing techniques," in
International Conference on Fast Software Encryption, 2016:
Springer, pp. 428-449.

[46] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks,
and L. Wingers, "SIMON and SPECK: Block Ciphers for the
Internet of Things," IACR Cryptol. ePrint Arch., vol. 2015, p.
585, 2015.

[47] Z. Chu, H. Chen, X. Wang, X. Dong, and L. Li, "Improved
integral attacks on SIMON32 and SIMON48 with dynamic key-
guessing techniques," Security and Communication Networks,
vol. 2018, 2018.

[48] P. Derbez, V. Lallemand, and A. Udovenko, "Cryptanalysis of
SKINNY in the Framework of the SKINNY 2018–2019
Cryptanalysis Competition," in International Conference on
Selected Areas in Cryptography, 2019: Springer, pp. 124-145.

[49] A. Bogdanov and M. Wang, "Zero correlation linear
cryptanalysis with reduced data complexity," in International

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

342

Workshop on Fast Software Encryption, 2012: Springer, pp. 29-
48.

[50] J. Lu, "Related-key rectangle attack on 36 rounds of the XTEA
block cipher," International Journal of Information Security, vol.
8, no. 1, pp. 1-11, 2009.

[51] E. Yarrkov, "Cryptanalysis of XXTEA," IACR Cryptol. ePrint
Arch., vol. 2010, p. 254, 2010.

[52] S. M. Muzammal, R. K. Murugesan and N. Z. Jhanjhi, "A
Comprehensive Review on Secure Routing in Internet of Things:
Mitigation Methods and Trust-Based Approaches," in IEEE
Internet of Things Journal, vol. 8, no. 6, pp. 4186-4210, 15
March15, 2021, doi: 10.1109/JIOT.2020.3031162.

[53] S. Ali et al., "Towards Pattern-Based Change Verification
Framework for Cloud-Enabled Healthcare Component-Based,"
in IEEE Access, vol. 8, pp. 148007-148020, 2020, doi:
10.1109/ACCESS.2020.3014671.

[54] Fatima-tuz-Zahra, N. Jhanjhi, S. N. Brohi and N. A. Malik,
"Proposing a Rank and Wormhole Attack Detection Framework
using Machine Learning," 2019 13th International Conference
on Mathematics, Actuarial Science, Computer Science and
Statistics (MACS), 2019, pp. 1-9, doi:
10.1109/MACS48846.2019.9024821.

[55] B. Hamid, N. Jhanjhi, M. Humayun, A. Khan and A. Alsayat,
"Cyber Security Issues and Challenges for Smart Cities: A
survey," 2019 13th International Conference on Mathematics,
Actuarial Science, Computer Science and Statistics (MACS),
2019, pp. 1-7, doi: 10.1109/MACS48846.2019.9024768.

[56] Kumar, T., Pandey, B., Mussavi, S.H.A. et al. CTHS Based
Energy Efficient Thermal Aware Image ALU Design on FPGA.
Wireless Pers Commun 85, 671–696 (2015).
https://doi.org/10.1007/s11277-015-2801-8

[57] Saeed, Soobia, N. Z. Jhanjhi, Mehmood Naqvi, and Mamoona
Humayun. "Analysis of software development methodologies."
International Journal of Computing and Digital Systems 8, no. 5
(2019): 446-460.

[58] M. Humayun, N. Jhanjhi, M. Alruwaili, S. S. Amalathas, V.
Balasubramanian and B. Selvaraj, "Privacy Protection and
Energy Optimization for 5G-Aided Industrial Internet of
Things," in IEEE Access, vol. 8, pp. 183665-183677, 2020, doi:
10.1109/ACCESS.2020.3028764.

Matasem Saleh is a Ph.D. scholar at
Taylor's University, Malaysia. There,
he is working as a researcher in the area
of Drone Detection Systems, Privacy
Protection and IoT security. He has
worked in the industry for a decade as
Telecom Project Manager in
EmaarAltelal, Saudi Arabia. He
obtained his MSc in Computer
Engineering from the University of

Engineering and Technology, Pakistan, in 2008, where he
developed FlocARe, an open-source network management
software.

Dr. Noor Zaman Jhanjhi (NZ
Jhanjhi) is currently working as
Associate Professor, Director Center
for Smart society 5.0 [CSS5], and
Cluster Head for Cybersecurity cluster,
at the School of Computer Science and
Engineering, Taylor’s University,
Malaysia. The cybersecurity research
cluster has extensive research
collaboration globally with several

institutions and professionals. Dr Jhanjhi serves as Associate

Editor and Editorial Assistant Board for several reputable
journals, such as PeerJ Computer Science, Frontier in
Communication and Networks. He received Outstanding
Associate Editor for IEEE ACCESS for 2020, PC member for
several IEEE conferences worldwide, and guest editor for
several reputed indexed journals. Active reviewer for a series of
top-tier journals has been awarded globally as a top 1%
reviewer by Publons (Web of Science). He has high indexed
publications in WoS/ISI/SCI/Scopus, and his collective
research Impact factor is more than 500 points. He has several
international Patents on his account, including Australian,
German, Japan, etc. edited/authored more than 40 research
books published by world-class publishers, including Springer,
Taylors and Frances, Willeys, Intech Open, IGI Global USA,
etc. He has great experience supervising and co-supervising
postgraduate students, and more than 20 PG scholars are
graduated under his supervision, and an ample number of
current PG students are under his supervision. He is an external
Ph.D./Master thesis examiner/evaluator for several universities
globally. He has completed more than 30 internationally funded
research grants successfully. He has served as a
Keynote/Invited speaker for more than 30 international
conferences globally, presented several Webinars worldwide,
chaired international conference sessions, and provided
Consultancy on several projects internationally. He has vast
experience of academic qualifications including ABET,
NCAAA, and NCEAC for 10 years. His research areas include
Cybersecurity, IoT security, Wireless security, Data Science,
Software Engineering, and UAVs.

Dr. Azween Abdullah is currently
working with Taylor's University. He
is currently a Professional
Development Alumnus of Stanford
University and MIT. His work
experience includes 30 years as an
academic in institutions of higher
learning and as the Director of research
and academic affairs at two institutions
of higher learning, the Vice-President

for educational consultancy services, 15 years in commercial
companies as a Software Engineer, a Systems Analyst, and as a
Computer Software Developer and an IT/MIS consultancy and
training.

Raazia Saher is a lecturer at King
Faisal University in the Department of
Computer Science and Information
Technology. She has over ten years of
academic experience in this prestigious
institution. She has a master's degree in
electrical engineering and is a registered
professional engineer in Pakistan
Engineering Council. She acquired
specialized skills in Next Generations

Networks & Soft Switches while working as an operational
engineer in Pakistan Telecommunications Company Limited.

