DOI QR코드

DOI QR Code

Numerical calculations for bioconvection MHD Casson nanofluid flow: Study of Brownian motion

  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Sharif, Humaira (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Banoqitah, Essam Mohammed (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Loukil, Hassen (Department of Electrical Engineering, College of Engineering, King Khalid University) ;
  • Ali, Imam (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Mahmoud, S.R. (GRC Department, Faculty of Applied Studies, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (FL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.03.03
  • Accepted : 2022.06.21
  • Published : 2022.08.25

Abstract

In this paper, the non-linear mathematical problem is solved via numerical scheme by utilizing shooting method. Brownian diffusion and thermophoresis along mass and heat transfer are accounted for. Non-linear expression is reduced via non-dimensional variables. The simplified ordinary differential equations are tackled by shooting technique. Behavior of distinct influential parameters is investigated graphically and analyzed for temperature and concentration profile. Our finding indicates that temperature profile is enhanced for the thermophoresis, Brownian motion coefficient, Prandtl number, Eckert number and temperature slip parameter. Comparison of numerical technique with the extant literature is made and an acceptable agreement is attained. Graphs are plotted to examine the influence of these parameters.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number (RGP.2/155/43).

References

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  2. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  3. Ahmed, R.A., Mustafa, N.M., Faleh, N.M. and Fenjan, R.M. (2020), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., 76(3), 413-420. https://doi.org/10.12989/sem.2020.76.3.413.
  4. Alfven, H. (1942), "Existence of electromagnetic-hydrodynamic waves", Nature, 150(3805), 405-406. https://doi.org/10.1038/150405d0.
  5. Ali, L., Wang, Y., Ali, B., Liu, X., Din, A. and Al Mdallal, Q. (2021), "The function of nanoparticle's diameter and Darcy-Forchheimer flow over a cylinder with effect of magnetic field and thermal radiation", Case Stud. Therm. Eng., 28, 101392. https://doi.org/10.1016/j.csite.2021.101392 9.
  6. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. https://doi.org/10.12989/acc.2018.6.6.585.
  7. Alkanhal, T.A., Sheikholeslami, M., Usman, M., Haq, R.U., Shafee, A., Al-Ahmadi, A.S. and Tlili, I. (2019), "Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source", Int. J. Heat Mass Transf., 139, 87-94. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.006.
  8. Ayodeji, F., Tope, A. and Pele, O. (2020), "Magneto-hydrodynamics (MHD) bioconvection nanofluid slip flow over a stretching sheet with thermophoresis, viscous dissipation and brownian motion", Mach. Learn. Res., 4(4), 51. https://doi.org/10.11648/j.mlr.20190404.12.
  9. Ayodeji, F., Tope, A. and Samuel, O. (2019), "Magneto-Hydrodynamics (MHD) bioconvection nanofluid slip flow over a stretching sheet with microorganism concentration and bioconvection peclet number effects", Am. J. Mech. Indus. Eng., 4(6), 86-95. https://doi.org/10.11648/j.ajmie.20190406.11.
  10. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
  11. Choi, S.U. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29)", Argonne National Lab., IL. USA.
  12. Elnaqeeb, T., Animasaun, I.L. and Shah, N.A. (2021), "Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities", Zeitschrift fur Naturforschung A, 76(3), 231-243. https://doi.org/10.1515/zna-2020-0317
  13. Gireesha, B.J., Mahanthesh, B. and Rashidi, M.M. (2015), "MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/sink", Int. J. Indus. Math., 7(3), 247-260.
  14. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  15. Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., ... & Javaid, N. (2020), "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system", Renew. Energy, 145, 282-293. https://doi.org/10.1016/j.renene.2019.05.130.
  16. Hayat, T. and Mehmood, O.U. (2011), "Slip effects on MHD flow of third order fluid in a planar channel", Commun. Nonlin. Sci. Numer. Simul., 16(3), 1363-1377. https://doi.org/10.1016/j.cnsns.2010.06.034.
  17. Hayat, T., Asad, S., Mustafa, M. and Alsaedi, A. (2015), "MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet", Comput. Fluid., 108, 179-185. https://doi.org/10.1016/j.compfluid.2014.11.016.
  18. Ibanez, G., Lopez, A., Lopez, I., Pantoja, J., Moreira, J. and Lastres, O. (2019), "Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective-radiative boundary conditions", J. Therm. Anal. Calorim., 135(6), 3401-3420. https://doi.org/10.1007/s10973-018-7558-3.
  19. Ibrahim, W. and Gamachu, D. (2019), "Nonlinear convection flow of Williamson nanofluid past a radially stretching surface", AIP Adv., 9(8), 085026. https://doi.org/10.1063/1.5113688.
  20. Jha, B.K. and Apere, C.A. (2013), "Unsteady MHD two-phase Couette flow of fluid-particle suspension", Appl. Math. Model., 37(4), 1920-1931. https://doi.org/10.1016/j.apm.2012.04.056.
  21. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 39. https://doi.org/10.12989/acc.2015.3.1.039.
  22. Khalaf, B.S., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites", Adv. Mater. Res., 8(3), 219. https://doi.org/10.12989/amr.2019.8.3.219.
  23. Khan, A., Ali, H.M., Nazir, R., Ali, R., Munir, A., Ahmad, B. and Ahmad, Z. (2019), "Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H2O-ethylene glycol mixture", J. Therm. Anal. Calorim., 138(5), 3007-3021. https://doi.org/10.1007/s10973-019-08320-7.
  24. Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transf., 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.
  25. Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Therm. Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015.
  26. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  27. Liang, G. and Mudawar, I. (2019), "Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels", Int. J. Heat Mass Transf., 136, 324-354. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.086.
  28. Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.
  29. Makinde, O.D. (2010), "Similarity solution of hydromagnetic heat and mass transfer over a vertical plate with a convective surface boundary condition", Int. J. Phys. Sci., 5(6), 700-710.
  30. Makinde, O.D. and Aziz, A. (2010), "MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition", Int. J. Therm. Sci., 49(9), 1813-1820. https://doi.org/10.1016/j.ijthermalsci.2010.05.015.
  31. Makinde, O.D., Khan, W.A. and Khan, Z.H. (2013), "Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet", Int. J. Heat Mass Transf., 62, 526-533. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.049.
  32. Maleki, H., Safaei, M.R., Togun, H. and Dahari, M. (2019), "Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation", J. Therm. Anal. Calorim., 135(3), 1643-1654. https://doi.org/10.1007/s10973-018-7559-2.
  33. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. https://doi.org/10.12989/acc.2017.5.5.539.
  34. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  35. Mustafa, M., Hina, S., Hayat, T. and Alsaedi, A. (2013), "Slip effects on the peristaltic motion of nanofluid in a channel with wall properties", J. Heat Transf., 135(4), HT-12-1075. https://doi.org/10.1115/1.4023038.
  36. Mustafa, M., Khan, J.A., Hayat, T. and Alsaedi, A. (2015), "Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions", AIP Adv., 5(2), 027106. https://doi.org/10.1063/1.4907927.
  37. Nadeem, S., Hussain, M. and Naz, M. (2010), "MHD stagnation flow of a micropolar fluid through a porous medium", Meccanica, 45(6), 869-880. https://doi.org/10.1007/s11012-010-9297-9.
  38. Nasiri, H., Jamalabadi, M.Y.A., Sadeghi, R., Safaei, M.R., Nguyen, T.K. and Shadloo, M.S. (2019), "A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows", J. Therm. Anal. Calorim., 135(3), 1733-1741. https://doi.org/10.1007/s10973-018-7022-4.
  39. Nazari, S., Ellahi, R., Sarafraz, M.M., Safaei, M.R., Asgari, A. and Akbari, O.A. (2019), "Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity", J. Therm. Anal. Calorim., 140(3), 1121-1145. https://doi.org/10.1007/s10973-019-08841-1.
  40. Pramuanjaroenkij, A., Tongkratoke, A. and Kakac, S. (2018), "Numerical study of mixing thermal conductivity models for nanofluid heat transfer enhancement", J. Eng. Phys. Thermophys., 91(1), 104-114. https://doi.org/10.1007/s10891-018-1724-0.
  41. Rashidi, S., Javadi, P. and Esfahani, J.A. (2019), "Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate", J. Therm. Anal. Calorim., 135(1), 551-563. https://doi.org/10.1007/s10973-018-7164-4.
  42. Razi, S.M., Soid, S.K., Aziz, A.S.A., Adli, N. and Ali, Z.M. (2019), "Williamson nanofluid flow over a stretching sheet with varied wall thickness and slip effects", J. Phys.: Conf. Ser., 1366(1), 012007. https://doi.org/10.1088/1742-6596/1366/1/012007.
  43. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  44. Saleem, S., Animasaun, I.L., Yook, S.J., Al-Mdallal, Q.M., Shah, N.A. and Faisal, M. (2022), "Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface: Significance of thermo-migration and Brownian motion", Surf. Interf., 30, 101854. https://doi.org/10.1016/j.surfin.2022.101854.
  45. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043.
  46. Saranya, S. and Al-Mdallal, Q.M. (2021), "Computational study on nanoparticle shape effects of Al2O3-silicon oil nanofluid flow over a radially stretching rotating disk", Case Stud. Therm. Eng., 25, 100943. https://doi.org/10.1016/j.csite.2021.100943.
  47. Sayin, E. and Calayir, Y. (2015), "Comparison of linear and non-linear earthquake response of masonry walls", Comput. Concrete, 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.
  48. Shafiq, A., Sindhu, T.N. and Al-Mdallal, Q.M. (2021), "A sensitivity study on carbon nanotubes significance in Darcy-Forchheimer flow towards a rotating disk by response surface methodology", Scientif. Report., 11(1), 1-26. https://doi.org/10.1038/s41598-021-87956-8.
  49. Sheikholeslami, M., Gerdroodbary, M.B., Moradi, R., Shafee, A. and Li, Z. (2019), "Application of Neural Network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel", Comput. Meth. Appl. Mech. Eng., 344, 1-12. https://doi.org/10.1016/j.cma.2018.09.025.
  50. Sheikholeslami, M., Mehryan, S.A.M., Shafee, A. and Sheremet, M.A. (2019), "Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity", J. Molecul. Liquid., 277, 388-396. https://doi.org/10.1016/j.molliq.2018.12.104.
  51. Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R.S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transf., 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076.
  52. Song, Y.Q., Obideyi, B.D., Shah, N.A., Animasaun, I.L., Mahrous, Y.M. and Chung, J.D. (2021), "Significance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface", Case Stud. Therm. Eng., 26, 101050. https://doi.org/10.1016/j.csite.2021.101050.
  53. Szilagyi, I. M., Santala, E., Heikkila, M., Kemell, M., Nikitin, T., Khriachtchev, L., ... & Leskela, M. (2011), "Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers", J. Therm. Anal. Calorim., 105(1), 73. https://doi.org/10.1007/s10973-011-1631-5.
  54. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.