DOI QR코드

DOI QR Code

Response of segmented pipelines subject to earthquake effects

  • Yigit, Adil (Istanbul Natural Gas Distribution Company (IGDAS), IGDAS Kavacik Hizmet Binasi)
  • Received : 2021.10.21
  • Accepted : 2022.07.23
  • Published : 2022.08.25

Abstract

The seismic failure-prone region in Istanbul has been examined in terms of the segmented pipelines. Although some researchers have suggested that this territory should be left as a green land, many people continue to live in this area. This region is about 9-10 km away from the North Anatolian Fault Line. This fault zone is an active right-lateral strike-slip fault line in Turkey and an earthquake with a magnitude of 7.0-7.5 is expected in the Marmara Sea. Therefore, superstructures and infrastructures are under both land sliding risks and seismic risks in this area. Because there are not any pipeline-fault line intersection points in the region, in this study, it has been focused on the behaviors of the segmented (sewage or stormwater) pipelines subject to earthquake-induced permanent ground deformation and seismic wave propagation. Based on the elastic beam theory some necessary analyses have been carried out and obtained results of this approximation have been examined.

Keywords

References

  1. Alexoudi, M., Terzi, V. and Chatzigogos, T. (2007), "Numerical assessment of damage state of segmented pipelines due to permanent ground deformation", Proceeding of 10th International Conference on Applications of Statistics and Probability in Civil Engineering, Tokyo, Japan, July.
  2. American Society of Civil Engineers (ASCE) (1984), "Guidelines for the seismic design of oil and gas pipeline systems", Committee on Gas and Liquid Fuel Lifeline, ASCE.
  3. Apak, M.Y., Ozen, H., Calic, M., Golgeli, B. and Ataoglu, S. (2022), "Applications of utility tunnels for natural gas pipelines", Tunnel. Underg. Space Technol., 122, 104243. https://doi.org/10.1016/j.tust.2021.104243.
  4. Banushi, G. and Wham, B.P. (2021), "Deformation capacity of buried hybrid-segmented pipelines under longitudinal permanent ground deformation", Can. Geotech. J., 58(8), 1095-1117. https://doi.org/10.1139/cgj-2020-0049.
  5. Bouabid, J. (1995), "Behavior of rubber gasketed concrete pipe joints during earthquakes", Ph.D. Thesis, Rensselaer Polytechnic Institute, December.
  6. Castiglia, M., Magistris, F.S. and Napolitano, A. (2018), "Stability of onshore pipelines in liquefied soils: Overview of computational methods", Geomech. Eng., 14(4), 355-366. http://doi.org/10.12989/gae.2018.14.4.355.
  7. El Hmadi, K. and O'Rourke, M.J. (1990), "Seismic damage to segmented buried pipelines", Earthq. Eng. Struct. Dyn., 19(4), 529-539. https://doi.org/10.1002/eqe.4290190405.
  8. Forcellini, D., Mina, D. and Karampour, H. (2022), "The role of soilstructure interaction in the fragilityassessment of HP/HT unburiedsubsea pipelines", J. Marine Sci. Eng., 10(1), 110. https://doi.org/10.3390/jmse10010110.
  9. Gedikli, A., Lav, M.A. and Yigit, A. (2008), "Seismic vulnerability of a natural gas pipeline network", ASCE Pipelines 2008, Atlanta, July.
  10. Gregor, N.J. (1995), "The attenuation of strong ground motion displacements", Earthquake Engineering Research Center, Report Number UCB/EERC-95/02, University of California at Berkeley, June.
  11. Hsieh, S. and Lee, C.T. (2011), "Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration", Eng. Geology, 122, 34-42. https://doi.org/10.1016/j.enggeo.2010.12.006.
  12. Indian Institute of Technology Kanpur (2007), IITK-GSDMA Guidelines for Seismic Design of Buried Pipelines, November.
  13. Jibson, R.W. (1993), "Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis", Transp. Res. Record, 1411, 9-17.
  14. Jibson, R.W. (2007), "Regression models for estimating coseismic landslide displacement", Eng. Geology, 91, 209-218. https://doi.org/10.1016/j.enggeo.2007.01.013.
  15. Jibson, R.W., Harp, E.L. and Michael, J.M. (1998), "A method for producing digital probabilistic seismic landslide hazard maps: An example from the Los Angeles, California area", US Geological Survey Open-File Report 98-113.
  16. Liu, L., Yang, C. and Wang, X. (2021), "Landslide susceptibility assessment using feature selection-based machine learning models", Geomech. Eng., 25(1), 1-16. http://doi.org/10.12989/gae.2021.25.1.001.
  17. Londono, T.V. and O'Rouerke, M. (2018), "Influence of diameter on seismic response of buried segmented pipelines", Soil Dyn. Earthq. Eng., 107, 332-338. https://doi.org/10.1016/j.soildyn.2018.01.034.
  18. Merka Insaat Taahhut Muhendislik Ticaret A.S. (2006), "Gurpinar-beylikduzu ve yakuplu beldeleri jeolojik ve jeofizik esasli etud raporu", Nisan, Istanbul, Turkiye. (in Turkish)
  19. Mina, D., Forcellini, D. and Karampour, H. (2020), "Analytical fragility curves for assessment of the seismic vulnerability of hp/ht unburiedsubsea pipelines", Soil Dyn. Earthq. Eng., 137, 106308. https://doi.org/10.1016/j.soildyn.2020.106308.
  20. Nanahkaran, Y.A., Mao, Y., Azarafza, M., Kockar, M.K. and Zhu, H. (2021), "Fuzzy-based multiple decision method for landslide susceptibility and hazard assessment: A case study of Tabriz, Iran", Geomech. Eng., 24(5), 407-418. http://doi.org/10.12989/gae.2021.24.5.407.
  21. Newmark, N.M. (1965), "Effects of earthquakes on dams and embankments", Geotechnique, 15, 139-159. http://doi.org/10.12989/gae.2021.24.5.407.
  22. O'Rourke, M. (1989), "Approximate analysis procedure for permanent ground deformation effect on buried pipelines", Proceedings of 2nd Japan-U.S. Workshop on Liquefaction, Large Ground Deformation and Their Effects on Lifeline Facilities, Buffalo, New York.
  23. O'Rourke, M. and Bouabid, J. (1996), "Analytical damage estimates for concrete pipelines", Proceedings of Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, June.
  24. O'Rourke, M. and Londono, T.V. (2016), "Analytical model for segmented pipe response to tensile ground strain", Earthq. Spectra, 32(4), 2533. http://doi.org/10.1193/050415EQS064M.
  25. O'Rourke, M.J. and Liu, X. (1999), "Response of buried pipelines subject to earthquake effects", Monograph No. 3, Multidisciplinary Center for Earthquake Research, University of Buffalo, Buffalo.
  26. O'Rourke, T.D., Grigoriu, M.D. and Khater, M.M. (1985), "A state of the art review: seismic response of buried pipelines", Ed. C. Sundararajan, Decade of Progress in Pressure Vessel Technology, ASME.
  27. Shi, P. (2015a), "Surface wave propagation effects on buried segmented pipelines", J. Rock Mech. Geotech. Eng., 7(4), 440-451. https://doi.org/10.1016/j.jrmge.2015.02.011.
  28. Shi, P. (2015b), "Seismic wave propagation effects on buried segmented pipelines", Soil Dyn. Earthq. Eng., 72, 89-98. https://doi.org/10.1016/j.soildyn.2015.02.006.
  29. Siyahi B., Erdik M., Sesetyan K., Demircioglu M.B. and Akman H. (2003), "Sivilasma ve sev stabilitesi hassasligi ve potansiyeli haritalari:istanbul ornegi", Besinci Ulusal Deprem Muhendisligi Konferansi, Istanbul, Turkiye. (in Turkish)
  30. Toprak, S., Nacaroglu, E. and Koc, C.A. (2015), "Seismic damage probabilities for segmented buried pipelines in liquefied soils", 6th International Conference on Earthquake Geotechnical Engineering, Christchurch, New Zealand.November.
  31. Toprak, S., Nacaroglu, E., Ballegooy, S.V., Koc, C.A., Jacka, M., Manav, Y., Torvelainen, E. and O'Rourke, T.D. (2019), "Segmented pipeline damage predictions using liquefaction vulnerability parameters", Soil Dyn. Earthq. Eng., 125, 105758. https://doi.org/10.1016/j.soildyn.2019.105758.
  32. Triantafyllaki, A., Papanastasiou, P. and Loukidis, D. (2020), "Numerical analysis of the structural response of unburied offshore pipelines crossing active normal and reverse faults", Soil Dyn. Earthq. Eng., 137, 106296. https://doi.org/10.1016/j.soildyn.2020.106296.
  33. Turkdogan, F.I. and Yetilmezsoy, K. (2004), "Su getirme ve kanalizasyon uygulamalari", Su Vakfi Yayinlari, Istanbul, Turkiye. (in Turkish)
  34. Vazouras, P., Dakoulas, P. and Karamanos, S.A. (2015), "Pipe-soil interaction and pipeline performance under strike-slip fault movements", Soil Dyn. Earthq. Eng., 72, 48-65. https://doi.org/10.1016/j.soildyn.2015.01.014.
  35. Vazouras, P., Karamanos, S.A. and Dakoulas, P. (2010), "Finite element analysis of buried steel pipelines under strike-slip fault displacements", Soil Dyn. Earthq. Eng., 30, 1361-1376. https://doi.org/10.1016/j.soildyn.2010.06.011
  36. Vazouras, P., Karamanos, S.A. and Dakoulas, P. (2012), "Mechanical behavior of buried steel pipes crossing active strike-slip faults", Soil Dyn. Earthq. Eng., 41, 164-180. https://doi.org/10.1016/j.soildyn.2012.05.012.
  37. Wang, L.R.L. (1979), "Some aspects of seismic resistant design of buried pipelines", Lifeline Earthquake Engineering-Buried Pipelines, Seismic Risk, and Instrumentation, PVP-34, ASME.
  38. Wang, T., Zhou, G., Wang, J. and Wang, D. (2020), "Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline", Geomech. Eng., 20(1), 19-28. http://doi.org/10.12989/gae.2020.20.1.019.
  39. Wham, B.P. and Davis, A.C. (2019), "Buried continuous and segmented pipelines subjected to longitudinal permanent ground deformation", J. Pipeline Syst. Eng. Pract., 10(4), 04019036. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000400.
  40. Wham, B.P., Franke, K.W., Dashti, S. and Kayen, R.E. (2017), "Water supply damage caused by the 2016 Kumamoto Earthquake", Lowland Technol. Int., 19(3), 151-160.
  41. Wijaya, H., Rajaev, P. and Gad, E. (2019), "Effect of seismic and soil parameter uncertainties on seismic damage of buried segmented pipeline", Transp. Geotech., 21, 100274. https://doi.org/10.1016/j.trgeo.2019.100274.
  42. Wilson, R.C. and Keefer, D.K. (1983), "Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake", Bull. Seismol. Soc. Am., 73(3), 863-877. https://doi.org/10.1785/BSSA0730030863.
  43. Xie, J., Zhang, L., Zheng, Q., Liu, X., Dubljevic, S. and Zhang, H. (2021), "Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach", Earthq. Struct., 20(1), 109-122. http://doi.org/10.12989/eas.2021.20.1.109.
  44. Yigit, A. (2015), "Buried continuous pipelines under the effects of earthquake", PhD Thesis, Istanbul Technical University, September, Istanbul, Turkey.
  45. Yigit, A. (2020), "Prediction of amount of earthquake-induced slope displacement by using newmark method", Eng. Geology, 264, 105385. https://doi.org/10.1016/j.enggeo.2019.105385.
  46. Yigit, A. (2021), "Newmark yontemine gore zemin deplasmaninin tahmin edilmesi", Politeknik Dergisi, 1-1. http://doi.org/10.2339/politeknik.665258.
  47. Yigit, A., Lav, M.A. and Gedikli, A. (2018), "Vulnerability of natural gas pipelines under earthquake effects", J. Pipeline Syst. Eng. Pract., 9(1), 04017036. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000295.
  48. Yoon, S., Lee, Y. and Jung, H. (2020), "A comprehensive approach to flow-based seismic risk analysis of water transmission network", Struct. Eng. Mech., 73(3), 339-351. http://doi.org/10.12989/sem.2020.73.3.339.
  49. Yun, H. and Kyriakides, S. (1990), "On the beam and shell modes of buckling of buried pipelines", Soil Dyn. Earthq. Eng., 9, 179-193. https://doi.org/10.1016/S0267-7261(05)80009-0.
  50. Zhang, D., Bie, X., M., Zeng, X., Lei, Z. and Du, G.F. (2020), "Experimental and numerical studies on mechanical behavior of buried pipelines crossing faults", Struct. Eng. Mech., 75(1), 71-86. http://doi.org/10.12989/sem.2020.75.1.071.