DOI QR코드

DOI QR Code

Effect of Mixed Jet with Primary Nozzle Area Ratio of Ejector on Oxygen Transfer Characteristics

산소 전달 특성에 미치는 이젝터 구동 노즐 면적비에 따른 혼합 분류의 영향

  • 박상규 (전남대학교 기계설계공학부) ;
  • 양희천 (전남대학교 기계설계공학부)
  • Received : 2022.06.28
  • Accepted : 2022.08.08
  • Published : 2022.09.30

Abstract

The objective of this is to experimentally investigate the effect of mixed jet on the oxygen transfer characteristics with the primary nozzle area ratio of an annular nozzle ejector for the application of a microbial fuel cell. A direct visualization method with a high speed camera system was used to capture the horizontal mixed jet images, and a binarization technique was used to analyze the images. The clean water unsteady state technique was used for the oxygen transfer measurement. The air-water mixed jet discharging into a water tank behaved similar to a buoyancy or horizontal jet with the primary nozzle area ratio. It was found that an optimum primary nozzle area ratio was observed where the oxygen transfer performance reached its maximum value due to the decrease of air volume fraction and the increase of jet length and air bubble dispersion.

Keywords

Acknowledgement

이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2019R111A3A01057227).

References

  1. S. K. Park and H. C. Yang, "Experimental investigation on characteristics of oxygen transfer efficiency for vertical-up aeration process", Trans. Korean Soc. Mech. Eng. B, Vol. 43, No. 4, 2019, pp. 241~248.
  2. H. C. Yang, "Effect of primary nozzle area and distance ratios of ejector on flow characteristics in water treatment process", Trans. Korean Soc. Mech. Eng. B, Vol. 42, No. 12, 2018, pp. 777~785. https://doi.org/10.3795/KSME-B.2018.42.12.777
  3. I. S. Choi and W. Udo, "Influence of ammonia and dissolved oxygen concentration on nitrite accumulation in a MBR", Trans. Korean Soc. Environ. Eng., Vol. 29, No. 8, 2007, pp. 922~929.
  4. J. A. Mueller, W. C. Boyle and H. J. Popel, Aeration: Principles and Practice, CRC Press LLC, New York, 2002.
  5. S. K. Kim and D. J. Yoo, "A Study on the driving characteristics of microbial fuel cell using mixed strains in domestic wastewater", Trans. Korean Hydrogen New Energy Soc., Vol. 32, No. 6, 2021, pp. 506~513. https://doi.org/10.7316/KHNES.2021.32.6.506
  6. J. K. Jang, J. H. Sung, Y. K. Kang and Y. H. Kim, "The effect of the reaction time increases of microbubbles with catalyst on the nitrogen reduction of livestock wastewater", Trans. Korean Soc. Environ. Eng., Vol. 37, No. 10, 2015, pp. 578~582. https://doi.org/10.4491/KSEE.2015.37.10.578
  7. J. C. Yu and T. H. Lee, "Evaluation of single and stacked MFC performances under different dissolved oxygen concentrations in cathode chamber", Trans. Korean Soc. Environ. Eng., Vol. 31, No. 4, 2009, pp. 249~255.
  8. L. Rago, P. Cristiani, F. Villa, S. Zecchin, A. Colombo, L. Cavalca and A. Schievano, "Influence of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells", Bioelecchem., Vol. 116, 2017, pp. 39~51.
  9. Q. Tao, J. Luo, J. Zhou, S. Zhou, G. Liu and R. Zhang, "Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell", Bioresour. Technol., Vol. 164, 2014, pp. 402~407. https://doi.org/10.1016/j.biortech.2014.05.002
  10. G. C. Gil, I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park and H. J. Kim, "Operational parameters affecting the performance of a mediator-less microbial fuel cell", Biosens. Bioelectron., Vol. 18, 2003, pp. 327~334. https://doi.org/10.1016/S0956-5663(02)00110-0
  11. L. G. Olias, A. R. Otero, P. J. Cameron and M. D. Lorenzo, "A soil microbial fuel cell-based biosensor for dissolved oxygen monitoring in water", Electrochimica Acta, Vol. 362, 2020, pp. 137108. https://doi.org/10.1016/j.electacta.2020.137108
  12. Y. Zhang and I. Angelidaki, "A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC)", Biosens. Bioelectron., Vol. 38, 2012, pp. 189~194. https://doi.org/10.1016/j.bios.2012.05.032
  13. S. J. You, Q. L. Zhao, J. Q. Jiang and J. N. Zhang, "Treatment of domestic wastewater with simultaneous electricity generation in microbial fuel cell under continuous operation", Chem. Biochem. Eng. Q., Vol. 20, No. 4, 2006, pp. 407~412.
  14. G. W. Chen, S. J. Choi, T. H. Lee, G. Y. Lee, J. H. Cha and C. W. Kim, "Application of biocathode in microbial fuel cell: cell performance and microbial community", Appl. Microbiol. Biotechnol., Vol. 79, No. 3, 2008, pp. 379~388. https://doi.org/10.1007/s00253-008-1451-0
  15. C. Kim, J. Cha, S. Choi and H. Yu, "Operational conditions and design factors of microbial fuel cell for practical application", Trans. Korean Soc. Environ. Eng., Vol. 31, No. 9, 2009, pp. 719~732.
  16. S. K. Park and H. C. Yang, "Effect of ejector mass ratio on aeration performance", Trans. Korean Soc. Mech. Eng. B, Vol. 45, No. 11, 2021, pp. 613~621. https://doi.org/10.3795/KSME-B.2021.45.11.613
  17. S. K. Park and H. C. Yang, "Experimental investigation on mixed jet and mass transfer characteristic of horizontal aeration process", Int. J. Heat Mass Transfer, Vol. 113, 2017, pp. 544~555. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.120
  18. S. K. Park and H. C. Yang, "An experimental investigation of the flow and mass transfer behavior in a vertical aeration process with orifice ejector", Energy, Vol. 160, 2018, pp. 954~964. https://doi.org/10.1016/j.energy.2018.07.064
  19. S. K. Park and H. C. Yang, "Experimental investigation on oxygen transfer efficiency of horizontal aeration process using central-driven ejector", Trans. Korean Soc. Mech. Eng. B, Vol. 43, No. 10, 2019, pp. 717~724. https://doi.org/10.3795/KSME-B.2019.43.10.717
  20. M. E. Jahromi and M. Khiadani, "Experimental study on oxygen transfer capacity of water jets discharging into turbulent cross-flow", J. Environ. Eng., Vol. 143, No. 6, 2017, pp. 04017007. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001194
  21. B. N. Taylor and C. E. Kuyatt, Guidelines for evaluating and expressing the uncertainty of NIST measurement results, NIST Technical Note 1297, 1994.