DOI QR코드

DOI QR Code

Evaluating performance of the post-tensioned tapered steel beams with shape memory alloy tendons

  • Received : 2020.03.27
  • Accepted : 2022.09.06
  • Published : 2022.09.25

Abstract

The external post-tension technique is one of the best strengthening methods for reinforcement and improvement of the various steel structures and substructure components such as beams. In the present work, the load carrying capacity of the post-tensioned tapered steel beams with external shape memory alloy (SMA) tendons are studied. 3D nonlinear finite element method with ABAQUS software is used to determine the effects of the increase in the flexural strength, and the improvement of the load carrying capacity. The effect of the different parameters, such as geometrical characteristics and the post-tension force applied to the tendons are also studied in this research. The results reveal that the external post-tension with SMA tendons in comparison with the steel tendons causes a significant improvement of the loading capacity. According to this, using SMA tendon for the reinforcement of the tapered beams causes a decrease in weight of these structures and as a consequence causes economic benefits for their application. This method can be used extensively for steel beams due to low executive costs and simplicity of the operation for post-tension.

Keywords

References

  1. Abou-Elfath, H. (2017), "Evaluating the ductility characteristics of self-centering buckling-restrained shape memory alloy braces", Smart Mater. Struct., 26(5), 34-54. https://doi.org/10.1088/1361-665X/aa6abc
  2. Abouali, S., Shahverdi, M., Ghassemieh, M. and Motavalli, M. (2019), "Nonlinear simulation of reinforced concrete beams retrofitted by near-surface mounted iron-based shape memory alloys", Eng. Struct., 187, 133-148. https://doi.org/10.1016/j.engstruct.2019.02.060.
  3. Izadi, M., Motavalli, M. and Ghafoori, E. (2019), "Iron-based shape memory alloy (Fe-SMA) for fatigue strengthening of cracked steel bridge connections", Construct. Build. Mater., 10(227)116800. https://doi.org/10.1016/j.conbuildmat.2019.116800
  4. Aizawa, S., Kakizawa, T. and Higasino, M. (1998), "Case studies of smart materials for civil structures", Smart Mater. Struct., 7(5), 61-77.
  5. Ayyub, B.M., Sohn, Y.G. and Saadatmanesh, H. (1990), "Prestressed composite girders under positive moment", J. Struct. Eng., 116(11), 2931-2951. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(2931).
  6. Belletti, B. and Gasperi, A. (2010), " Behavior of prestressed steel beams", J. Struct. Eng., 136(9), 1131-1139. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000208.
  7. Chataigner, S., Benzarti, K., Foret, G., Caron, J.F., Gemignani, G., Brugiolo, M. and Lehmann, F. (2018), "Design and testing of an adhesively bonded CFRP strengthening system for steel structures", Eng. Struct., 177, 556-565. https://doi.org/10.1016/j.engstruct.2018.10.004.
  8. Chataigner, S., Whabeh, M., Sanchez, D.G., Benzarti, K., Birtel, V., Fischer, M. and Zalbide, M. (2020), "Fatigue strengthening of steel bridges with adhesively bonded CFRP laminates: Case study", J. Compos. Construct., 24(3), 12. https://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0001014.
  9. Chowdhury, M.A., Rahmzadeh, A. and Alam, A.S. (2019), "Improving the seismic performance of post-tensioned selfcentering connections using SMA angles or end plates with SMA bolts", Smart Mater. Struct., 28(7), 34-56.
  10. Dall'Asta, A. and Zona, A. (2005), "Finite element model for externally prestressed composite beams with deformable connection", J. Struct. Eng., 131(5), 706-714. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(706).
  11. Dehghani, A. and Aslani, F. (2020), "The effect of shape memory alloy, steel, and carbon fibres on fresh, mechanical, and electrical properties of cementitious composites", Cement Concrete Compos., 11, 103659. https://doi.org/10.1016/j.cemconcomp.2020.103659.
  12. Duarte, A.P.C., Silva, B.A., Silvestre, N., De Brito, J., Julio, E. and Castro, J.M. (2016), "Tests and design of short steel tubes filled with rubberised concrete", Eng. Struct., 112, 274-286. https://doi.org/10.1016/j.engstruct.2016.01.018
  13. El-Zohairy, A. and Salim, H. (2017), "Parametric study for posttensioned composite beams with external tendons", Adv. Struct. Eng., 20(10), 1433-1450. https://doi.org/10.1177/1369433216684352.
  14. Elbahy, Y.I. and Youssef, M.A. (2019), "Flexural behaviour of superelastic shape memory alloy reinforced concrete beams during loading and unloading stages", Eng. Struct., 181, 246-259. https://doi.org/10.1016/j.engstruct.2018.12.001.
  15. Eshghinejad, A. (2012), Finite Element Study of a Shape Memory Alloy Bone Implant, University of Toledo.
  16. Fang, C., Zheng, Y., Chen, J., Yam, M.C. and Wang, W. (2019), "Superelastic NiTi SMA cables: Thermal-mechanical behavior, hysteretic modelling and seismic application", Eng. Struct., 183, 533-549. https://doi.org/10.1016/j.engstruct.2019.01.049.
  17. Franco, N., Biscaia, H. and Chastre, C. (2018), "Experimental and numerical analyses of flexurally-strengthened concrete T-beams with stainless steel", Eng. Struct., 172, 981-996. https://doi.org/10.1016/j.engstruct.2018.06.077.
  18. Fugazza, D. (2005), "Experimental investigation on the cyclic properties of superelastic NiTi shape-memory alloy wires and bars", Individual study, European School for Advanced Studies in Reduction of Seismic Risk ROSE School, Pavia, Italy.
  19. Ghafoori, E. (2015), Fatigue Strengthening of Metallic Members Using Un-Bonded and Bonded CFRP Laminates, ETH Zurich.
  20. Ghafoori, E., Hosseini, A., Al-Mahaidi, R., Zhao, X.L. and Motavalli, M. (2018), "Prestressed CFRP-strengthening and long-term wireless monitoring of an old roadway metallic bridge", Eng. Struct., 176, 585-605. https://doi.org/10.1016/j.engstruct.2018.09.042.
  21. Ghafoori, E. and Motavalli, M. (2015), "Innovative CFRPprestressing system for strengthening metallic structures", J. Compos. Construct., 19(6), 43-87. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000559.
  22. Ghannam, M., Mahmoud, N.S., Badr, A. and Salem, F.A. (2017), "Effect of post tensioning on strengthening different types of steel frames", J. King Saud Univ. Eng. Sci., 29(4), 329-338. https://doi.org/10.1016/j.jksues.2016.07.001.
  23. Haskett, M., Oehlers, D.J. and Ali, M.M. (2008), "Local and global bond characteristics of steel reinforcing bars", Eng. Struct., 30(2), 376-383. https://doi.org/10.1016/j.engstruct.2007.04.007.
  24. Hosseini, A., Ghafoori, E., Al-Mahaidi, R., Zhao, X.L. and Motavalli, M. (2019), "Strengthening of a 19th-century roadway metallic bridge using nonprestressed bonded and prestressed unbonded CFRP plates", Construct. Build. Mater., 209, 240-259. https://doi.org/10.1016/j.conbuildmat.2019.03.095.
  25. Maleki, F.K. and Toygar, M.E. (2019), "The fracture behavior of sandwich composites with different core densities and thickness subjected to mode I loading at different temperatures", Mater. Res. Express, 6(4), 045314. https://doi.org/10.1088/2053-1591/aafc02
  26. Hosseini, A., Ghafoori, E., Motavalli, M., Nussbaumer, A., Zhao, X. L., Al-Mahaidi, R. and Terrasi, G. (2019), "Development of prestressed unbonded and bonded CFRP strengthening solutions for tensile metallic members", Eng. Struct., 181, 550-561. https://doi.org/10.1016/j.engstruct.2018.12.020.
  27. Hosseini, A., Michels, J., Izadi, M. and Ghafoori, E. (2019), "A comparative study between Fe-SMA and CFRP reinforcements for prestressed strengthening of metallic structures", Construct. Build. Mater., 226, 976-992. https://doi.org/10.1016/j.conbuildmat.2019.07.169.
  28. Hu, J.W. and Noh, M.H. (2015), "Seismic response and evaluation of SDOF self-centering friction damping braces subjected to several earthquake ground motions", Adv. Mater. Sci. Eng., 2015. https://doi.org/10.1155/2015/397273.
  29. Imran, M., Mahendran, M. and Keerthan, P. (2018), "Experimental and numerical investigations of CFRP strengthened short SHS steel columns", Eng. Struct., 175, 879-894. https://doi.org/10.1016/j.engstruct.2018.08.042.
  30. Islam, M., Ali, R.B. and Billah, M. (2019), "Strengthening techniques of steel structure: An overview", World Sci. News, 118, 181-193.
  31. Izadi, M., Ghafoori, E., Hosseini, A., Motavalli, M. and Maalek, S. (2017), "Development of anchorage systems for strengthening of steel plates with iron-based shape memory alloy strips", In Fourth Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2017) (No. CONF).
  32. Izadi, M.R., Ghafoori, E., Shahverdi, M., Motavalli, M. and Maalek, S. (2018), "Development of an iron-based shape memory alloy (Fe-SMA) strengthening system for steel plates", Eng. Struct., 174, 433-446. https://doi.org/10.1016/j.engstruct.2018.07.073.
  33. Izadi, M., Motavalli, M. and Ghafoori, E. (2019), "Iron-based shape memory alloy (Fe-SMA) for fatigue strengthening of cracked steel bridge connections", Construct. Build. Mater., 227, 116800. https://doi.org/10.1016/j.conbuildmat.2019.116800.
  34. Jahanghiry, R., Yahyazadeh, R., Sharafkhani, N. and Maleki, V.A. (2016), "Stability analysis of FGM microgripper subjected to nonlinear electrostatic and temperature variation loadings", Sci. Eng. Compos. Mater., 23(2), 199-207. https://doi.org/10.1515/secm-2014-0079.
  35. Kambal, M.E.M. and Jia, Y. (2018), "Theoretical and experimental study on flexural behavior of prestressed steel plate girders", J. Construct. Steel Res., 142, 5-16. https://doi.org/10.1016/j.jcsr.2017.12.007.
  36. Kazem, H., Zhang, Y., Rizkalla, S., Seracino, R. and Kobayashi, A. (2018), "CFRP shear strengthening system for steel bridge girders", Eng. Struct., 175, 415-424. https://doi.org/10.1016/j.engstruct.2018.08.038.
  37. Li, H. N., Liu, M.M. and Fu, X. (2018), "An innovative recentering SMA-lead damper and its application to steel frame structures", Smart Mater. Struct., 27(7), 075029. https://doi.org/10.1088/1361-665X/aac28f
  38. Ghaderi, M., Ghaffarzadeh, H. and Maleki, V.A. (2015), "Investigation of vibration and stability of cracked columns under axial load", Earthq. Struct., 9(6), 1181-1192. https://doi.org/10.12989/eas.2015.9.6.1181.
  39. Maleki, V.A. and Mohammadi, N. (2017), "Buckling analysis of cracked functionally graded material column with piezoelectric patches", Smart Mater. Struct., 26(3), 65-72.
  40. Martinelli, E., Hosseini, A., Ghafoori, E. and Motavalli, M. (2019), "Behavior of prestressed CFRP plates bonded to steel substrate: Numerical modeling and experimental validation", Compos. Struct., 207, 974-984. https://doi.org/10.1016/j.compstruct.2018.09.023.
  41. Moradi, S. and Burton, H.V. (2018), "Response surface analysis and optimization of controlled rocking steel braced frames", Bull. Earthq. Eng., 16, 4861-4892. https://doi.org/10.1007/s10518-018-0373-1.
  42. Ozbek, E., Aykac, B. and Aykac, S. (2019), "The effects of brick walls strengthened with perforated steel plates on frame behavior", Eng. Struct., 189, 62-76. https://doi.org/10.1016/j.engstruct.2019.03.080.
  43. Ozcatalbas, Y. and Ozer, A. (2007), "Investigation of fabrication and mechanical properties of internally prestressed steel I beam", Mater. Des., 28(6), 1988-1993. https://doi.org/10.1016/j.matdes.2006.04.007.
  44. Park, S., Kim, T., Kim, K. and Hong, S.N. (2010), "Flexural behavior of steel I-beam prestressed with externally unbonded tendons", J. Construct. Steel Res., 66(1), 125-132. https://doi.org/10.1016/j.jcsr.2009.07.013.
  45. Pisani, M.A. (1998), "A numerical survey on the behaviour of beams pre-stressed with FRP cables", Construct. Build. Mater., 12(4), 221-232. https://doi.org/10.1016/S0950-0618(97)00081-0.
  46. Ravi, V. and Krishnan, P.A. (2019), "Effect of replacing steel with shape memory alloy in shear wall systems", Mater. Today, 1(11), 1088-1093. https://doi.org/10.1016/j.matpr.2018.12.043.
  47. Ren, Y., Wang, Y., Wang, B., Ban, H., Song, J. and Su, G. (2018), "Flexural behavior of steel deep beams prestressed with externally unbonded straight multi-tendons", Thin-Walled Struct., 131, 519-530. https://doi.org/10.1016/j.tws.2018.07.022.
  48. Saadatmanesh, H., Albrecht, P. and Ayyub, B.M. (1989), "Experimental study of prestressed composite beams", J. Struct. Eng., 115(9), 2348-2363. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:9(2348).
  49. Sayyaadi, H., Zakerzadeh, M.R. and Salehi, H. (2012), "A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests", Scientia Iranica, 19(2), 249-257. https://doi.org/10.1016/j.scient.2012.01.005.
  50. Song, G., Ma, N. and Li, H.N. (2006), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010.
  51. Tamai, H. and Kitagawa, Y. (2002), "Pseudoelastic behavior of shape memory alloy wire and its application to seismic resistance member for building", Comput. Mater. Sci., 25(1-2), 218-227. https://doi.org/10.1016/S0927-0256(02)00266-5.
  52. Tao, Z., Uy, B., Liao, F. Y. and Han, L.H. (2011), "Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression", J. Construct. Steel Res., 67(11), 1719-1732. https://doi.org/10.1016/j.jcsr.2011.04.012.
  53. Taoum, A., Jiao, H. and Holloway, D. (2015), "Upgrading steel Ibeams using local post-tensioning", J. Construct. Steel Res., 113, 127-134. https://doi.org/10.1016/j.jcsr.2015.06.012.
  54. Toygar, M.E., Tee, K.F., Maleki, F.K. and Balaban, A.C. (2019), "Experimental, analytical and numerical study of mechanical properties and fracture energy for composite sandwich beams", J. Sandw. Struct. Mater., 21(3), 1167-1189. https://doi.org/10.1177/1099636217710003.
  55. Varughese, K. and El-Hacha, R. (2020), "Design and behaviour of steel braced frame reinforced with NiTi SMA wires", Eng. Struct., 212, 110502. https://doi.org/10.1016/j.engstruct.2020.110502.
  56. Varughese, K.A. (2019), Performance of Steel Braced Frame Reinforced with Shape Memory Alloy Wires, Schulich School of Engineering.
  57. Wang, B., Jiang, H. and Wang, J. (2019), "Numerical simulation and behavior insights of steel columns with SMA bolts towards earthquake resilience", J. Construct. Steel Res., 161, 285-295. https://doi.org/10.1016/j.jcsr.2019.07.011.
  58. Wang, W., Fang, C., Yang, X., Chen, Y., Ricles, J. and Sause, R. (2017), "Innovative use of a shape memory alloy ring spring system for self-centering connections", Eng. Struct., 153, 503-515. https://doi.org/10.1016/j.engstruct.2017.10.039.
  59. Wu, C., He, L., Ghafoori, E. and Zhao, X.L. (2018), "Torsional strengthening of steel circular hollow sections (CHS) using CFRP composites", Eng. Struct., 171, 806-816. https://doi.org/10.1016/j.engstruct.2018.06.014.
  60. Xu, F., Zhang, X. and Zhang, H. (2018), "A review on functionally graded structures and materials for energy absorption", Eng. Struct., 171, 309-325. https://doi.org/10.1016/j.engstruct.2018.05.094.
  61. Xu, X., Cheng, G. and Zheng, J. (2018), "Tests on pretrained superelastic NiTi shape memory alloy rods: towards application in self-centering link beams", Adv. Civil Eng., 2018. https://doi.org/10.1155/2018/2037376.
  62. Xu, X., Tu, J., Cheng, G., Zheng, J. and Luo, Y. (2019), "Experimental study on self-centering link beams using posttensioned steel-SMA composite tendons", J. Construct. Steel Res., 155, 121-128. https://doi.org/10.1016/j.jcsr.2018.12.026.
  63. Xu, X., Zhang, Y. and Luo, Y. (2016), "Self-centering modularized link beams with post-tensioned shape memory alloy rods", Eng. Struct., 112, 47-59. https://doi.org/10.1016/j.engstruct.2016.01.006.
  64. Xu, X., Zheng, Y. and Luo, Y. (2018), "Self-centering links using post-tensioned composite tendons", Adv. Struct. Eng., 21(9), 1302-1312. https://doi.org/10.1177/1369433217742523.
  65. Ye, H., Li, C., Pei, S., Ummenhofer, T. and Qu, H. (2018), "Fatigue performance analysis of damaged steel beams strengthened with prestressed unbonded CFRP plates", J. Bridge Eng., 23(7), 04018040. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001251
  66. Zhou, B., Yoon, S. H. and Leng, J.S. (2009), "A three-dimensional constitutive model for shape memory alloy", Smart Mater. Struct., 18(9), 095016. https://doi.org/10.1088/0964-1726/18/9/095016
  67. Wang, Y., Aslani, F. and Liu, Y. (2020), "The effect of tensile and bond characteristics of NiTi shape memory alloy, steel and polypropylene fibres on FRSCC beams under three-point flexural test", Construct. Build. Mater., 233, 117333. https://doi.org/10.1016/j.conbuildmat.2019.117333.