DOI QR코드

DOI QR Code

Mechanical properties and damage constitutive model of self-compacting rubberized concrete

  • Ke, Xiaojun (Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Civil Engineering and Architecture, Guangxi University) ;
  • Xiang, Wannian (Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Civil Engineering and Architecture, Guangxi University) ;
  • Ye, Chunying (Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Civil Engineering and Architecture, Guangxi University)
  • Received : 2021.10.11
  • Accepted : 2022.08.16
  • Published : 2022.10.25

Abstract

Two different types of rubber aggregates (40 mesh rubber powder and 1-4 mm rubber particles respectively) were devised to substitute fine aggregates at 10%, 15%, 20% and 30% by volume in self-compacting concrete to investigate their basic mechanical properties. The results show that with the increase of rubber content, the reduction of compressive strength, splitting tensile strength and static modulus of elasticity gradually increase, and energy dissipation performance gradually increase. The rubber addition significantly reduces brittleness and decelerates damaged process. Whilst, the effect of rubber particles is greater when they are finer. Considering the mechanical properties, the optimal rubber content is 10%. It is recommended that the rubber volume content in rubberized concrete (RC) should not be higher than 20%. In addition, a constitutive model under uniaxial compression was proposed basing on the strain equivalent principle of Lemaitre and the damage theory, which was in good agreement with the test curves.

Keywords

Acknowledgement

The research presented in this paper is supported by the National Natural Science Foundation of China (project No.51668007) and the Interdisciplinary Scientific Research Foundation of GuangXi University (Grant No.2022JCB008). The financial support is highly appreciated.

References

  1. AbdelAleem, B.H. and Hassan, A.A.A. (2018), "Development of self-consolidating rubberized concrete incorporating silica fume", Constr. Build. Mater., 161, 389-397. http://doi.org/10.1016/j.conbuildmat.2017.11.146.
  2. Aslani, F. and Gedeon, R. (2019), "Experimental investigation into the properties of self-compacting rubberised concrete incorporating polypropylene and steel fibers", Struct. Concrete, 20(1), 267-281. http://doi.org/10.1002/suco.201800182.
  3. Bompa, D.V., Elghazouli, A.Y., Xu, B., Stafford, P.J. and Ruiz-Teran, A.M. (2017), "Experimental assessment and constitutive modelling of rubberised concrete materials", Constr. Build. Mater., 137, 246-260. http://doi.org/10.1016/j.conbuildmat.2017.01.086.
  4. CEB-FIP (1993), CEB-FIP Model Code 1990: Design Code 1994, Committee Euro-International for Concrete-International Federation for Prestressing, London, U.K.
  5. Chen, A., Han, X., Chen, M., Wang, X., Wang, Z. and Guo, T. (2020), "Mechanical and stress-strain behavior of basalt fiber reinforced rubberized recycled coarse aggregate concrete", Constr. Build. Mater., 260, http://doi.org/10.1016/j.conbuildmat.2020.119888.
  6. Di Mundo, R., Dilonardo, E., Nacucchi, M., Carbone, G. and Notarnicola, M. (2019), "Water absorption in rubber-cement composites: 3d structure investigation by x-ray computed-tomography", Constr. Build. Mater., 228, 116602. http://doi.org/10.1016/j.conbuildmat.2019.07.328.
  7. Diaz, R., Colomines, G., Peuvrel-Disdier, E. and Deterre, R. (2018), "Thermo-mechanical recycling of rubber: relationship between material properties and specific mechanical energy", J. Mater. Process. Tech., 252, 454-468. http://doi.org/10.1016/j.jmatprotec.2017.10.014.
  8. EFNARC (2005), The European Guidelines for Self-Compacting Concrete Specification, Production and Use, European Federation of National Associations Representing for Concrete, Norfolk, U.K.
  9. Emiroglu, M., Yildiz, S. and Kelestemur, M. H. (2015), "A study on dynamic modulus of self-consolidating rubberized concrete", Comput. Concrete, 15(5), 795-805. http://doi.org/10.12989/cac.2015.15.5.795.
  10. Gargouri, A., Daoud, A., Loulizi, A., Loulizi, A. and Kallel, A. (2016), "Laboratory investigation of self-consolidating waste tire rubberized concrete", ACI Mater. J., 113(5), 661-668. http://doi.org/10.14359/51688991.
  11. GB/T 50081-2016 (2016), Standard for Test Method of Ordinary Fresh Concrete, Ministry of Housing and Urban-Rural Development of the China (MOHURD), Beijing, China. (in Chinese)
  12. Gesoglu, M., Guneyisi, E., Hansu, O., Ipek, S. and Asaad, D.S. (2015), "Influence of waste rubber utilization on the fracture and steel-concrete bond strength properties of concrete", Constr. Build. Mater., 101(1), 1113-1121. http://doi.org/10.1016/j.conbuildmat.2015.10.030.
  13. Gregori, A., Castoro, C., Marano, G.C. and Greco, R. (2019), "Strength reduction factor of concrete with recycled rubber aggregates from tires", J. Mater. Civil Eng., 31(8), 04019146. http://doi.org/10.1061/(ASCE)MT.1943-5533.0002783.
  14. Guneyisi, E., Gesoglu, M. and Ozturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. http://doi.org/10.1016/j.cemconres.2004.04.005.
  15. Gurunandan, M., Phalgun, M., Raghavendra, T. and Udayashankar, B.C. (2019), "Mechanical and damping properties of rubberized concrete containing polyester fibers", J. Mater. Civil Eng., 31(2), 04018395. http://doi.org/10.1061/(ASCE)MT.1943-5533.0002614.
  16. Habib, A. and Yildirim, U. (2021), "Prediction of the dynamic properties in rubberized concrete", Comput. Concrete, 27(3), 185-197. http://doi.org/10.12989/cac.2021.27.3.185.
  17. Hadzima-Nyarko, M., Nyarko, K.E., Djikanovic, D. and Brankovic, G. (2021), "Microstructural and mechanical characteristics of self-compacting concrete with waste rubber", Struct. Eng. Mech., 78(2), 175-186. http://doi.org/10.12989/sem.2021.78.2.175.
  18. He, J. and Chen, W. (2013), "A simplified concrete damage constitutive model", Adv. Mat. Res., 671-674, 1663. http://doi.org/10.4028/www.scientific.net/AMR.671-674.1663.
  19. Hilal, N.N. (2017), "Hardened properties of self-compacting concrete with different crumb rubber size and content", Int. J. Sustain. Built Environ., 6(1), 191-206. http://doi.org/10.1016/j.ijsbe.2017.03.001.
  20. JGJ/T283-2012 (2012), Technical Specification for Application of Self-Compacting Concrete, Ministry of Housing and Urban-Rural Development of the China (MOHURD), Beijing, China. (in Chinese)
  21. Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manage., 28(12SI), 2472-2482. http://doi.org/10.1016/j.wasman.2008.01.015.
  22. Kral, P., Hradil, P. and Kala, J. (2018), "Evaluation of constitutive relations for concrete modeling based on an incremental theory of elastic strain-hardening plasticity", Comput. Concrete, 22(2), 227-237. http://doi.org/10.12989/cac.2018.22.2.227.
  23. Lemaitre, J. (1984), "How to use damage mechanics", Nucl. Eng. Des., 80(2), 233-245. https://doi.org/10.1016/0029-5493(84)90169-9.
  24. Li, B., Huang, W., Li, C. and Dong, K. (2017), "Study on damage constitutive model of steel fiber recycled brick aggregate concrete", J. Huazhong Univ. Sci. Techno. (Bat. Sci. Ed.), 45(1), 17-23. http://doi.org/10.13245/j.hust.170104. (in Chinese)
  25. Li, D., Zhuge, Y., Gravina, R., E.Mills, J. (2018), "Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab", Const. Build. Mater., 166, 745-759. http://doi.org/10.1016/j.conbuildmat.2018.01.142.
  26. Li, J. and Ren, X. (2009), "Stochastic damage model for concrete based on energy equivalent strain", Int. J. Solid. Struct., 46(11-12), 2407-2419. http://doi.org/10.1016/j.ijsolstr.2009.01.024.
  27. Li, L., Ruan, S. and Zeng, L. (2014), "Mechanical properties and constitutive equations of concrete containing a low volume of tire rubber particles", Constr. Build. Mater., 70, 291-308. http://doi.org/10.1016/j.conbuildmat.2014.07.105.
  28. Li, N., Long, G., Ma, C., Fu, Q., Zeng, X., Ma, K., Xie, Y. and Luo, B. (2019), "Properties of self-compacting concrete (SCC) with recycled tire rubber aggregate: a comprehensive study", J. Clean. Prod., 236, 117707. http://doi.org/10.1016/j.jclepro.2019.117707.
  29. Mallek, J., Daoud, A., Omikrine-Metalssi, O. and Loulizi, A. (2021), "Performance of self-compacting rubberized concrete against carbonation and chloride penetration", Struct. Concrete, 22(5), 2720-2735. http://doi.org/10.1002/suco.202000687.
  30. Najim, K.B. and Hall, M.R. (2013), "Crumb rubber aggregate coatings/pre-treatments and their effects on interfacial bonding, air entrapment and fracture toughness in self-compacting rubberised concrete (SCRC)", Mater. Struct., 46(12), 2029-2043. http://doi.org/10.1617/s11527-013-0034-4.
  31. Padhi, S. and Panda, K.C. (2016), "Fresh and hardened properties of rubberized concrete using fine rubber and silpozz", Adv. Concrete Constr., 4(1), 49-69. http://doi.org/10.12989/acc.2016.4.1.049.
  32. Pham, T.M., Renaud, N., Pang, V., Shi, F., Hao, H. and Chen, W. (2021), "Effect of rubber aggregate size on static and dynamic compressive properties of rubberized concrete", Struct. Concrete, 23(4), 2510-2522. http://doi.org/10.1002/suco.202100281.
  33. Popovics, S. (1973), "A numerical approach to the complete stress-strain curve of concrete", Cement Concrete Res., 3(5), 583-599. https://doi.org/10.1016/0008-8846(73)90096-3.
  34. Revilla-Cuesta, V., Skaf, M., Santamaria, A., Ortega-Lopez, V. and Manso, J.M. (2021), "Assessment of longitudinal and transversal plastic behavior of recycled aggregate self-compacting concrete: A two-way study", Const. Build. Mater., 292, 123426. https://doi.org/10.1016/j.conbuildmat.2021.123426.
  35. Siddika, A., Al Mamun, M.A., Alyousef, R., Amran, Y.H.M., Aslani, F. and Alabduljabbar, H. (2019), "Properties and utilizations of waste tire rubber in concrete: a review", Constr. Build. Mater., 224, 711-731. http://doi.org/10.1016/j.conbuildmat.2019.07.108.
  36. Sofi, A. (2018), "Effect of waste tyre rubber on mechanical and durability properties of concrete-A review", Ain Shams Eng. J., 9(4), 2691-2700. http://doi.org/10.1016/j.asej.2017.08.007.
  37. Strukar, K., Sipos, T.K., Milicevic, I. and Busic, R. (2019), "Potential use of rubber as aggregate in structural reinforced concrete element-A review", Eng. Struct., 188, 452-468. http://doi.org/10.1016/j.engstruct.2019.03.031.
  38. Su, H., Yang, J., Ling, T., Ghataora, G.S. and Dirar, S. (2015), "Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes", J. Clean. Prod., 91, 288-296. http://doi.org/10.1016/j.jclepro.2014.12.022.
  39. Sukontasukkul, P. (2009), "Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel", Constr. Build. Mater., 23(2), 1084-1092. http://doi.org/10.1016/j.conbuildmat.2008.05.021.
  40. Thomas, B.S. and Gupta, R.C. (2016), "A comprehensive review on the applications of waste tire rubber in cement concrete", Renew. Sust. Energ. Rev., 54, 1323-1333. http://doi.org/10.1016/j.rser.2015.10.092.
  41. Wang, J.J., Chen, X.D., Bu, J.W. and Guo, S.S. (2019), "Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs", Comput. Concrete, 24(4), 283-293. http://doi.org/10.12989/cac.2019.24.4.283.
  42. Williams, K.C. and Partheeban, P. (2018), "An experimental and numerical approach in strength prediction of reclaimed rubber concrete", Adv. Concrete Constr., 6(1), 87-102. http://doi.org/10.12989/acc.2018.6.1.087.
  43. Xie, J., Zheng, Y., Guo, Y., Ou, R., Xie, Z. and Huang, L. (2019), "Effects of crumb rubber aggregate on the static and fatigue performance of reinforced concrete slabs", Compos. Struct., 228, 111371. http://doi.org/10.1016/j.compstruct.2019.111371.
  44. Yin, G., Zuo, X., Wen, X. and Tang, Y. (2021), "Experimental study and modeling on stress-strain curve of sulfate-corroded concrete", Comput. Concrete, 28(1), 1-12. http://doi.org/10.12989/cac.2021.28.1.001.
  45. Zhang, T., Huang, W. and Rong, C. (2015), "Damage constitutive models of polypropylene fiber recycled concrete", Mater. Rev., 29(11B), 150-155. http://doi.org/10.11896/j.issn.1005-023X.2015.22.033. (in Chinese)
  46. Zheng, L., Huo, X.S. and Yuan, Y. (2008), "Strength, modulus of elasticity, and brittleness index of rubberized concrete", J. Mater. Civil Eng., 20(11), 692-699. http://doi.org/10.1061/(ASCE)0899-1561(2008)20:11(692).