DOI QR코드

DOI QR Code

Effects of Chloride Concentration and Applied Current Density on Stray Current Corrosion Characteristics of 6061-T6 Al Alloy for Electric Vehicle Battery Housing

전기자동차 배터리 하우징용 6061-T6 알루미늄합금의 전식 특성에 미치는 염화물농도 및 인가전류밀도의 영향

  • Shin, Dong-Ho (Graduate school, Mokpo national maritime university) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 신동호 (목포해양대학교 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2022.09.05
  • Accepted : 2022.09.14
  • Published : 2022.11.02

Abstract

Interest in electric vehicle is on the rise due to global eco-friendly policies. To improve the efficiency of electric vehicles, it is essential to reduce weights of components. Since electric vehicles have various electronic equipment, the research on stray current corrosion is required. In this research, a galvanostatic corrosion experiment was performed on 6061-T6 Al alloy for electric vehicle battery housing using chloride concentration and applied current density as variables in a solution simulating an acid rain environment. As a result of the experiment, when chloride concentration and applied current density were increased, corrosion damage became larger. In particular, pitting damage was dominant at an applied current density of 0.1 mA/cm2. Pitting damage over the entire surface was found at a current density of 1.0 mA/cm2. In conclusion, chloride concentration had a relatively large effect on localized corrosion. The applied current density had a great effect on uniform corrosion. However, in the case of applied current density, localized corrosion was also greatly affected by interaction with chloride.

Keywords

References

  1. C. M. Costa, J. C. Barbosa, H. Castro, R. Goncalves, and S. L. Mendez, Electric vehicles: To what extent are environmentally friendly and cost effective? - Comparative study by european countries, Renewable and Sustainable Energy Reviews, 151, 111548 (2021). Doi: https://doi.org/10.1016/j.rser.2021.111548
  2. H. Y. Lee, S. H. Ahn, and H. T. Im, A Research on StrayCurrent Corrosion Mechanism of High Voltage Cable Connector on Electrification Vehicles, Corrosion Science and Technology, 18, 117 (2019). Doi: https://doi.org/10.14773/cst.2019.18.4.117
  3. B. Nykvist, F. Sprei, and M. Nilsson, Assessing the progress toward lower priced long range battery electric vehicles, Energy Policy, 123, 144 (2019). Doi: https://doi.org/10.1016/j.enpol.2018.09.035
  4. S. Arora, W. Shen, and A. Kapoor, Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles, Renewable and Sustainable Energy Reviews, 60, 1319 (2016). Doi: http://dx.doi.org/10.1016/j.rser.2016.03.013
  5. J. R. Davis, Aluminum and aluminum alloys. 1, p. 31 USA: ASM International (1993).
  6. E. Gultekin and M. Yahsi, Investigation of Lattice Structures for the Battery Pack Protection, International Journal of Automotive Science and Technology, 5, 331 (2021). Doi: https://doi.org/10.30939/ijastech..1020932
  7. I. W. Huang, B. L. Hurley, F. Yang, R. G. Buchheit, Dependence on Temperature, pH, and Cl- in the Uniform Corrosion of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6, Electrochemica Acta, 199, 242 (2016). Doi: http://dx.doi.org/10.1016/j.electacta.2016.03.125
  8. M. X. Milagre, M. S. Pereira, A. A. Gomes, M. Scapin, M. Franco, F. Yokaichiya, F. Genezini, and I. Costa, Corrosion characterization of the 6061 Al-Mg-Si alloy in synthetic acid rain using neutron tomography, Applied Radiation and Isotopes, 184, 110197 (2022). Doi: https://doi.org/10.1016/j.apradiso.2022.110197
  9. S. R. Kumar, S. D. Krishnaa, M. D. Krishna, N. T. Gokulkumar, and A. R. Akilesh, Investigation on corrosion behaviour of aluminium 6061-T6 alloy in acidic, alkaline and salt medium, Materials Today : Proceedings, 45, 1878 (2021). Doi: https://doi.org/10.1016/j.matpr.2020.09.079
  10. B. H. Yoon, H. J. Kim, W. S. Chang, and Y. G. Kweon, and J. L. Shang, Corrosion Behavior of Arc Weld and Firction Stir Weld in Al 6061-T6 Alloys, Corrosion Science and Technology, 5, 196 (2006). http://www.corrosionkorea.org/publication/publication04_1_result.php?cs_titl e=Corrosion+behavior+of+arc+weld+and+friction+stir+weld+in+Al+6061-T6+alloys&cs_abstract=&cs_author=&cs_keyword=&cs_year_start=&cs_year_end=&x=60&y=13
  11. J. Szymenderski, W. Machczynski, and K. Budnik, Modeling Effects of Stochastic Stray Currents from D.C. Traction on Corrosion Hazard of Buried Pipelines, Energies, 12, 4570 (2019). Doi: https://doi.org/10.3390/en12234570
  12. C. Yang, G. Cui, Z. Li, Y. Zhao, and C. Zhang, Study the Influence of DC Stray Current on the Corrosion of X65 Steel Using Electrochemical Method, International Journal of Electrochemical Science, 10, 10223 (2015). http://www.electrochemsci.org/list15.htm#issue10 https://doi.org/10.1016/S1452-3981(23)11255-7
  13. C. Vargel, Corrosion of Aluminium, 2, p. 15, Elsevier (2004). https://www.elsevier.com/books/corrosion-of-aluminium/vargel/978-0-08-099925-8
  14. J. L. Trompette, L. Arurault, S. Fontorbes, and L. Massot, Influence of the anion specificity on the electrochemical corrosion of anodized aluminum substrates, Electrochemica Acta, 55, 2901 (2010). Doi: https://doi.org/10.1016/j.electacta.2009.12.063
  15. X. Zhang, M. Liu, F. Lu, M. Liu, Z. Sun, and Z. Tang, Atmospheric Corrosion of 7B04 Aluminum Alloy in Marine Environments, Corrosion Science and Technology, 17, 6 (2018). Doi: https://doi.org/10.14773/cst.2018.17.1.6
  16. B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy, Corrosion Science, 50, 1841 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.03.00
  17. K. V. Akpanyung and R. T. Loto, Pitting corrosion evaluation : a review, Journal of Physics : Conference Series, 1378, 022088 (2019). Doi: https://doi.org/10.1088/1742-6596/1378/2/022088
  18. L. Bertolini, M. Carsana, and P. Pedeferri, Corrosion behaviour of steel in concrete in the presence of stray current, Corrosion Science, 49, 1056 (2007). Doi: https://doi.org/10.1016/j.corsci.2006.05.048
  19. W. Feng, Z. Dong, W. Liu, H. Cui, W. Tang, and F. Xing, An experimental study on the influence of applied voltage on current efficiency of rebars with a modified accelerated corrosion test, Cement and Concrete Composites, 122, 104120 (2021). Doi: https://doi.org/10.1016/j.cemconcomp.2021.104120
  20. D. A. Jones, Principles and prevention of corrosion, 2nd, pp. 156, 256, 257, 267, Prentice Hall, New Jersey (1996).
  21. A. Toloei, V. Stoilov, and D. Northwood, The relationship between surface roughness and corrosion, Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition, p. 1, The American Society of Mechanical Engineers, San Diego, Califonia, USA (2013). Doi: https://doi.org/10.1115/IMECE2013-65498
  22. D. H. Shin and S. J. Kim, Investigation on Electrochemical Characteristics of Battery Housing Material for Electric Vehicles in Solution Simulating an Acid Rain Environment with Chloride Concentrations, Corrosion Science and Technology, 21, 147 (2022). Doi: https://doi.org/10.14773/cst.2022.21.2.147
  23. A. Chiba, I. Muto, Y. Sugawara, and N. Hara, Pit Initiation Mechanism at MnS Inclusions in Stainless Steel : Synergistic Effect of Elemental Sulfur and Chloride Ions, Journal of The Electrochemical Society, 160, 511 (2013). Doi: https://doi.org/10.1149/2.081310jes
  24. ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion 414 Testing of Metals, P.7, ASTM International, West Conshohocken, PA (2004).
  25. G. Acosta, L. Veleva, J. L. Lopez, and D. A. L. Sauri, Contrasting initial events of localized corrosion on surfaces of 2219-T42 and 6061-T6 aluminum alloys exposed in Caribbean seawater, Transactions of Nonferrous Metals Society of China, 29, 34 (2019). Doi: https://doi.org/10.1016/S1003-6326(18)64912-X
  26. M. Yasuda, F. Weinberg, and D. Tromans, Pitting Corrosion of Al and Al-Cu Single Crystals, Journal of The Electrochemical Society, 137, 3708 (1990). Doi: https://doi.org/10.1149/1.2086291
  27. V. S. Sinyavskii, Pitting and Stress Corrosions of Aluminum Alloys; Correlation between Them, Protection of Metals, 37, 469 (2001). Doi: https://doi.org/10.1023/A:1012374432246
  28. A. J. Davenport, Y. Yuan, R. Ambat, B. J. Connolly, M. Strangwood, A. Afseth, and G. Scamans, B. G. Pollet, Intergranular Corrosion and Stress Corrosion Cracking of Sensitised AA5182, Materials Science Forum, 519-521, 641 (2006). Doi: https://doi.org/10.4028/www.scientific.net/MSF.519-521.641
  29. F. Eckermann, T. Suter, P. J. Uggowitzer, A. Afseth, and P. Schmutz, The influence of MgSi particle reactivity and dissolution processes on corrosion in Al-Mg-Si alloys, Electrochemica Acta, 54, 844 (2008). Doi: https://doi.org/10.1016/j.electacta.2008.05.078
  30. V. Guillaumin and G. Mankowski, Localized corrosion of 2021 T351 aluminium alloy in chloride media, Corrosion Science, 41, 421 (1999). Doi: https://doi.org/10.1016/S0010-938X(98)00116-4
  31. B. W. Lifka and D. O. Sprowls, An Improved Exfoliation Test for Aluminum Alloys, Electrochemica Acta, 1, 7 (1966). Doi: https://doi.org/10.5006/0010-9312-22.1.7
  32. M. A. Arshadi, J. B. Johnson, and G. C. Wood, The influence of an isobutane-SO2 pollutant system on the earlier stages of the atmospheric corrosion of metals, Corrosion Science, 23, 763 (1983). Doi: https://doi.org/10.1016/0010-938X(83)90039-227
  33. A. L. Paulina, O. X. Octavio, G. L. Diego, V. L. Natalya, A. D. A. Marco, V. L. Irina, and A. E. Elsa, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate, Materials, 7, 5711 (2014). Doi: https://doi.org/10.3390/ma7085711
  34. Y. Guo, H. Tan, D. Wang, and T. Meng, Effects of alternating stray current on the corrosion behaviours of buried Q235 steel pipelines, Anti-Corrosion Methods and Materials, 64, 599 (2017). https://doi.org/10.1108/ACMM-01-2017-1748
  35. W. S. Tait, Handbook of Environmental Degradation of Materials, 3rd, pp. 97 - 115,William Andrew (2018). Doi: https://doi.org/10.1016/B978-0-323-52472-8.00005-8