DOI QR코드

DOI QR Code

The Development of Stretch Sensors for Measuring the Wrist Movements for People Using Fishing Lures

루어낚시 참여자의 손목 움직임 측정을 위한 스트레치 센서 개발

  • 최윤성 (숭실대학교 스마트웨어러블공학과) ;
  • 박진희 (숭실대학교 유기신소재바이퍼) ;
  • 김주용 (숭실대학교 유기신소재바이퍼)
  • Received : 2022.03.16
  • Accepted : 2022.06.21
  • Published : 2022.09.30

Abstract

This study seeks to develop a stretch sensor for measuring the wrist movements of people using fishing lures. In order to confirm wrist movement, a stretch sensor was attached to the wrist band, and measurements of the dorsiflexion, plantar flexion, and fishing landing motion were measured using a scale to gauge factor, tensile strength, and elongation recovery rate. A conductive sensor using CNT dispersion was developed and applied to the E-band under the same conditions. A total of 15 sensors of the same size and five types of impregnation once, twice, and three times each were used to measure the gauge factor using UTM. The sensor that was impregnated twice had the best gauge rate, and the prototypes were manufactured with three sensors with high gauge rates and tensile strength. The results of the operation test conducted by connecting to the Arduino showed that Sample 1, which had the highest tensile strength and gauge factor, had a stable graph wavelength in three operations. Samples 2 and 3 showed stable wavelengths in the dorsiflexion and the plantar flexion; however, signal noise appeared in the fishing landing motion. This showed stable wavelengths in the two motions, but the wavelengths of the graphs differ depending on the tensile strength and gauge factor in the fishing landing motion. As a result, it was possible to identify the conditions necessary for manufacturing a stretch sensor for measuring wrist movement. This study will contribute to the development of smart wearable products for lure fishing.

본 연구의 목적은 루어낚시 참여자의 손목 움직임 측정을 위한 스트레치 센서를 개발하는 것이다. 손목움직임 측정을 위해 스트레치 센서를 손목에 부착하여 배굴, 저굴 그리고 랜딩동작을 게이지율, 인장강도 그리고 신장회복률을 척도로 실험을 진행하였다. CNT 분산액을 이용한 전도성 센서를 개발하고 E-band에 동일한 조건으로 적용하였다. 함침을 각각 한 번, 두 번, 그리고 세 번한 같은 크기의 5종, 15가지 센서를 만능재료시험기(Dacell dn-fga Universal testing machine, UTM)를 활용해 게이지율(Gauge Factor)을 측정하였다. 두 번 함침한 센서가 게이지율이 가장 우수했으며, 게이지율과 인장강도가 높은 세 가지 센서로 프로토 타입을 제작하였다. 아두이노에 연결하여 동작테스트를 한 결과, 인장강도와 게이지율이 가장 높은 시료 1이 세 가지 동작에서 일정한 파장이 유지되었다. 시료 2,3은 배굴과 저굴에서는 일정한 파장을 나타내었지만, 랜딩동작에서는 신호 노이즈가 나타났다. 이는, 랜딩동작에서는 인장강도와, 게이지율에 따라 파장의 패턴이 다르게 나타나는 것을 알 수 있었다. 이와 같은 결과로 손목의 움직임 측정을 위한 스트레치 센서 제작시에 필요한 조건들을 유추할 수 있었다. 본 연구의 결과를 활용하여 루어낚시용 스마트 웨어러블 제품 개발에 응용이 가능할 것으로 사료된다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0002397, 2022년 산업혁신인재성장지원사업).

References

  1. Ates, H. C., Dincer, C., Gder, F., & Yetisen, A. K. (2021). Wearable devices for the detection of COVID-19. Nature Electronics, 4(1), 13-14. https://doi.org/10.1038/s41928-020-00533-1
  2. Beniczky, S., Cook, M., Karoly, P., Nurse, E., & Ryvlin, P. (2021). Machine learning and wearable devices of the future. Epilepsia, 62, S116-S124.
  3. Cho, H. S., Park, S. H., Kang, D. H., Lee, K. H., Kang, S. J., Han, B. R., Oh, J. H., Lee, H. D., Lee, J. H., & Lee, J. W. (2015). Performance evaluation of fabric sensors for movement-monitoring smart clothing: Based on the experiment on a dummy. Science of Emotion & Sensibility, 18(4), 25-34. DOI:10.14695/ kjsos.2015.18.4.25
  4. Choi, Y, S., Park, J, H., & Kim, J, Y. (2022). A study on the effect of EMS wrist guards for wrist tunnel syndrome in lure-fishing participants. Science of Emotion & Sensibility, 25(1), 115-128. https://doi.org/10.14695/KJSOS.2022.25.1.115
  5. Chun, S, H., Kim, S. U., & Kim, J. Y. (2021). Development of wrist tunnel syndrome prevention smart gloves using CNT-based tensile fabric Sensor: Focusing on mouse use. Science of Emotion & Sensibility, 24(4), 117-128. https://doi.org/10.14695/KJSOS.2021.24.4.117
  6. Cochrane, C. & Cayla, A. (2013). Polymer-based resistive sensors for smart textiles. In Multidisciplinary know-how for smart-textiles developers (pp. 129-153). Woodhead Publishing. DOI: 10.1533/9780857093530.1.129
  7. De Angelis, R., Salaffi, F., Filippucci, E., & Grassi, W. (2006). Carpal tunnel syndrome treatment. Reumatismo, 58(1), 5-10. Retrieved from https://www.facebook.com/alphaclo.official/; https://stretchsense.com/
  8. Jang. J. C., Park. J. H., & Kim. J. Y. (2021). Development of stretch sensors to measure thigh motor capacity. Journal of Fashion Business, 25(5), 99. https://doi.org/10.12940/JFB.2021.25.5.99
  9. Jeong, M. S. & Kim, M. (2021). Understanding leisure conflicts of bass lure fishing and exploring the direction to desirable leisure activity. Journal of Leisure Studies, 19(3), 49-70. https://doi.org/10.51979/KSSLS.2021.04.84.49
  10. Kim, D. Y. (2008). A study on factors for developement of leisure sports fishing. (Unpublished master's thesis). KyongGi University, Suwon, Republic of Korea.
  11. Kim, J. M. & Woo. D. J. (2013). Start fishing((짜릿한 손맛) 낚시를 시작하다). Every Hobby.
  12. Kim, J. S., Park, J, H., & Kim, J, Y. (2020). Development of smart soccer socks using a textile stretch sensorFocused on middle school girls between the ages of 14 and 15-. Journal of Fashion Business, 24(3),17. https://doi.org/10.12940/JFB.2020.24.3.17
  13. Kim, K. C. & Yoon. Y. S. (2012). A study on the leisure constraints, skill, and participants in leisure activities: With sports fishing. Journal of Tourism and Leisure Research, 24(3), 25-41(17 pages).
  14. Kim, U. (2008). A study on the motivation and satisfaction of lure fishing enthusiasts. (Unpublished master's thesis). KyongGi University, Suwon, Republic of Korea.
  15. Koh, J. O. (2018). Effects of self-microcurrent massage on delayed onset muscle soreness (DOMS) and sit and reach: A preliminary study. Journal of Sport and Leisure Studies, 73, 463-470(8 pages). https://doi.org/10.51979/KSSLS.2018.08.73.463
  16. Kwak. J. H. (2021). Analysing effect of treatment by PVA to stretch sensor based on E-Textile made by CNT. (Unpublished master's thesis). Soongsil University, Seoul, Korea.
  17. Lee, J. I. & Jung, H. T. (2008). Technical status of carbon nanotubes composites. Korean Chemical Engineering Research, 46(1), 7-14.
  18. Lee, S. G. (2003). A public and environmental economic analysis of management aspects and institutional management framework of marine recreational fisheries. The Journal of Fisheries Business Administration, 34(1), 137.
  19. Lu, X. M. (2020). A study on the design keyword of smart wearable product using social network analysis. The Society of Korea Illusart, The Treatise on The Plastic Media, 23(4), 187.
  20. Ministry of Oceans and Fisheries. (2020b). Retrieved from https://www.mof.go.kr/statPortal/cate/inforGraphView.do#
  21. Oh, S. S. (2014). The study on the emotional experience of lure-fishing participants. Korean Journal of Sports Science, 23(2), 297-307(11 pages).
  22. Roh, J. S. (2016). Wearable textile strain sensors. Fashion & Textile Research Journal, 18(6), 733-745. DOI: 10.5805/SFTI.2016.18.6.733
  23. Seo, D. C. (1998). Fishing Encyclopedia (낚시백과사전). Book publishing Natural Science.
  24. Seyedin, S., Zhang, P., Naebe, M., Qin, S., Chen, J., Wang, X., & Razal, J. M. (2019). Textile strainsensors: A review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 6(2), 219-249. DOI: 10.1039/c8mh01062e
  25. The Great Encyclopedia of Nursing Science. (1996)
  26. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348): 56-58. https://doi.org/10.1038/354056a0
  27. Yun, H. Y., Kim, S. U., & Kim, J. Y. (2021). Carbonnanotube-based spacer fabric pressure sensors for biological signal monitoring and the evaluation of sensing capabilities. Science of Emotion & Sensibility, 24(2), 65-74. DOI: 10.14695/KJSOS.2021.24.2.65